Управление финансами
документы

1. Адресная помощь
2. Бесплатные путевки
3. Детское пособие
4. Квартиры от государства
5. Льготы
6. Малоимущая семья
7. Малообеспеченная семья
8. Материальная помощь
9. Материнский капитал
10. Многодетная семья
11. Налоговый вычет
12. Повышение пенсий
13. Пособия
14. Программа переселение
15. Субсидии
16. Пособие на первого ребенка

Управление финансами
егэ ЕГЭ 2018    Психологические тесты Интересные тесты   Изменения 2018 Изменения 2018
папка Главная » Экономисту » Функции сложного процента

Функции сложного процента

Cложные проценты

Вернуться назад на Cложные проценты

Расчет исчисления реальной ценности (стоимости) денег основан на временной оценке денежных потоков, которая основана на следующем. Цена приобретения объекта недвижимости определяется, в конечном счете, величиной дохода, который инвестор предполагает получить в будущем. Однако покупка объекта недвижимости и получение доходов происходят в разные отрезки времени. Поэтому простое сопоставление величины затрат и доходов в той сумме, в которой они будут отражены в финансовой отчетности, невозможно (например, 10 млн. рублей готового дохода, полученные через 3 года, будут меньше этой суммы в настоящее время). Однако на стоимость денег оказывают влияние не только информационные процессы, но и основное условие инвестирования — вложенные деньги должны приносить доход.

Приведение денежных сумм, возникающих в разное время, к сопоставимому виду называется временной оценкой денежных потоков. В этих расчетов положен сложный процент, который означает, что вся основная сумма, находящаяся на депозите, должна приносить процент, включая процент, оставшийся на счете с предыдущих периодов.

Теория и практика использования функций сложного процента базируется на ряде допущений:

1. Денежный поток, в котором суммы различаются по величине, называют денежным потоком;
2. Денежный поток, в котором все суммы равновелики, называют аннуитетом;
3. Суммы денежного потока возникают через одинаковые промежутки времени, называемые периодом;
4. Доход, получаемый на инвестированный капитал, из хозяйственного оборота не изымается, а присоединяется к основному капиталу;
5. Суммы денежного потока возникают в конце периода (в иных случаях требуется соответствующая корректировка).

Рассмотрим подробнее шесть функций сложного процента:

1. Накопленная сумма единицы. Данная функция позволяет определить будущую стоимость имеющейся денежной суммы исходя их предполагаемой ставки периодичности дохода, срока накопления и начисления процентов. Накопленная сумма единицы — базовая функция сложного процента, позволяющая определить будущую стоимость при заданном периоде, процентной ставке и известной сумме в будущем:

FV = PV * (1 + i)n

Пример задачи: Получен кредит 150 млн. руб. сроком на 2 года, под 15% годовых; начисление % происходит ежеквартально. Определить наращенную сумму, подлежащую возврату.

2. Текущая стоимость единицы (фактор реверсии). Текущая стоимость единицы (реверсии) дает возможность определить настоящую (текущую, приведенную) стоимость суммы, величина которой известна в будущем при заданном периоде процентной ставки. Это процесс, полностью обратный начислению сложного процента:

PV = FV / (1 + i)n

Показывает текущую стоимость денежной суммы, которая должна быть единовременно получена в будущем.

Пример задачи: Какова текущая стоимость 1 000 долларов, полученных в конце пятого года при 10% годовых при годовом начислении процента?

3. Накопление единицы за период (будущая стоимость аннуитета). Показывает, какой по истечении всего срока будет стоимость серии равных сумм, депонированных в конце каждого из периодических интервалов, т.е. будущая стоимость аннуитета. (Аннуитет — это денежный поток, в котором все суммы равновелики и возникают через одинаковые промежутки времени):

FVA = (1 + i)n – 1 i PMT

Пример задачи: Определить будущую стоимость регулярных ежемесячных платежей величиной по 12000$ в течение 4 лет при ставке 11,5% и ежемесячном накоплении.

4. Текущая стоимость обычного аннуитета. Показывает текущую стоимость равномерного потока доходов, например, доходов, получаемых от сдаваемой в аренду собственности. Первое поступление происходит в конце первого периода; последующие - в конце каждого последующего периода:

PVA = PMT * 1 - (1 + i)-n i

Пример задачи: Определить величину кредита, если известно, что в его погашение ежегодно выплачивается по 30000 $ в течение 8 лет при ставке 15%.

5. Фактор фонда возмещения. Показывает сумму равновеликого периодического взноса, который вместе с процентом необходим для того, чтобы к концу определенного периода накопить сумму, равную:

FVA. SFF = FVA * i (1 + i)n - 1

Пример задачи: Определить сумму, ежемесячно вносимую в банк под 15% годовых для покупки дома стоимостью 65000000$ через 7 лет.

6. Взнос на амортизацию единицы. Показывает равновеликий периодический платеж, необходимый для полной амортизации кредита, т.е. позволяет определить размер платежа, необходимого для возврата кредита, включая процент и выплату основной суммы долга:

PMT = PVA * i 1 - (1 + i)-n

тема

документ Финансовые вложения
документ Финансовые инструменты
документ Финансовые отношения
документ Финансовые показатели
документ Финансовые ресурсы
документ Финансовые рынки




назад Назад | форум | вверх Вверх

Управление финансами
важное

Курс доллара на 2018 год
Курс евро на 2018 год
Цифровые валюты 2018
Алименты 2018

Аттестация рабочих мест 2018
Банкротство 2018
Бухгалтерская отчетность 2018
Бухгалтерские изменения 2018
Бюджетный учет 2018
Взыскание задолженности 2018
Выходное пособие 2018

График отпусков 2018
Декретный отпуск 2018
ЕНВД 2018
Изменения для юристов 2018
Кассовые операции 2018
Командировочные расходы 2018
МСФО 2018
Налоги ИП 2018
Налоговые изменения 2018
Начисление заработной платы 2018
ОСНО 2018
Эффективный контракт 2018
Брокеру
Недвижимость



©2009-2018 Центр управления финансами. Все права защищены. Публикация материалов
разрешается с обязательным указанием ссылки на сайт. Контакты