Управление финансами
документы

1. Адресная помощь
2. Бесплатные путевки
3. Детское пособие
4. Квартиры от государства
5. Льготы
6. Малоимущая семья
7. Малообеспеченная семья
8. Материальная помощь
9. Материнский капитал
10. Многодетная семья
11. Налоговый вычет
12. Повышение пенсий
13. Пособия
14. Программа переселение
15. Субсидии
16. Пособие на первого ребенка

Управление финансами
егэ ЕГЭ 2018    Психологические тесты Интересные тесты   Изменения 2018 Изменения 2018
папка Главная » Полезные статьи » Основы регрессионного анализа

Основы регрессионного анализа

Регрессионный анализ

Вернуться назад на Регрессионный анализ

Для решения задач экономического анализа и прогнозирования очень часто используются статистические, отчетные или наблюдаемые данные. При этом полагают, что эти данные являются значениями случайной величины. Случайной величиной называется переменная величина, которая в зависимости от случая принимает различные значения с некоторой вероятностью. Закон распределения случайной величины показывает частоту ее тех или иных значений в общей их совокупности.

При исследовании взаимосвязей между экономическими показателями на основе статистических данных часто между ними наблюдается стохастическая зависимость. Она проявляется в том, что изменение закона распределения одной случайной величины происходит под влиянием изменения другой. Взаимосвязь между величинами может быть полной (функциональной) и неполной (искаженной другими факторами).

Пример функциональной зависимости выпуск продукции и ее потребление в условиях дефицита.

Неполная зависимость наблюдается, например, между стажем рабочих и их производительностью труда. Обычно рабочие с большим стажем трудятся лучше молодых, но под влиянием дополнительных факторов образование, здоровье и т.д. эта зависимость может быть искажена.

Раздел математической статистики, посвященный изучению взаимосвязей между случайными величинами, называется корреляционным анализом (от лат. correlatio соотношение, соответствие).

Основная задача корреляционного анализа это установление характера и тесноты связи между результативными (зависимыми) и факторными (независимыми) (признаками) в данном явлении или процессе. Корреляционную связь можно обнаружить только при массовом сопоставлении фактов. Характер связи между показателями определяется по корреляционному полю.

Если у зависимый признак, а х независимый, то, отметив каждый случай х (i) с координатами х и yi, получим корреляционное поле.

Теснота связи определяется с помощью коэффициента корреляции, который рассчитывается специальным образом и лежит в интервалах от минус единицы до плюс единицы.

Если значение коэффициента корреляции лежит в интервале от 1 до 0,9 по модулю, то отмечается очень сильная корреляционная зависимость. В случае если значение коэффициента корреляции лежит в интервале от 0,9 до 0,6, то говорят, что имеет место слабая корреляционная зависимость. Наконец, если значение коэффициента корреляции находится в интервале от – 0,6 до 0,6, то говорят об очень слабой корреляционной зависимости или полном ее отсутствии.

Таким образом, корреляционный анализ применяется для нахождения характера и тесноты связи между случайными величинами.

Регрессионный анализ своей целью имеет вывод, определение (идентификацию) уравнения регрессии, включая статистическую оценку его параметров. Уравнение регрессии позволяет найти значение зависимой переменной, если величина независимой или независимых переменных известна. Практически, речь идет о том, чтобы, анализируя множество точек на графике (т.е. множество статистических данных), найти линию, по возможности точно отражающую заключенную в этом множестве закономерность (тренд, тенденцию), линию регрессии.

По числу факторов различают одно-, двух- и многофакторные уравнения регрессии.

По характеру связи однофакторные уравнения регрессии подразделяются:

a. на линейные:
У= a*bx ,
где х экзогенная (независимая) переменная, у эндогенная (зависимая, результативная) переменная, а,b параметры;
b. степенные:
У= a*
c. показательные
У= a*

Задача №2. Основы регрессионного анализа

Необходимо:

1. Определить уравнение связи между производительностью труда и рентабельностью предприятия. Вычислить коэффициент корреляции между производительностью труда и рентабельностью предприятия. Проверить гипотезу о значимости отличия коэффициента корреляции от нуля.

Считая связь между производительностью труда и рентабельностью линейной, построить уравнения связи между названными показателями, используя метод наименьших квадратов. Проверить гипотезу об отличии от нуля коэффициента регрессии. Дать экономическую интерпретацию полученных результатов.

2. Предположить, что связь между производительностью труда и рентабельностью, например, степенная, показательная или др. Произвести все расчеты. Выбрать ту функциональную зависимость, где ошибка коэффициента регрессии Sa1 наименьшая.


Уровень рентабельности (млн. руб) у

Производительность  труда, тыс.руб. х

9,3

147

9,2

131

9,5

154

9,6

162

9,1

133

9,0

122

9,2

142

9,5

151

9,8

166

9,0

131



тема

документ Монархия
документ Оценка предприятий
документ Теория организации
документ Оценочная деятельность
документ Теории мотивации




назад Назад | форум | вверх Вверх

Управление финансами
важное

Курс доллара на 2018 год
Курс евро на 2018 год
Цифровые валюты 2018
Алименты 2018

Аттестация рабочих мест 2018
Банкротство 2018
Бухгалтерская отчетность 2018
Бухгалтерские изменения 2018
Бюджетный учет 2018
Взыскание задолженности 2018
Выходное пособие 2018

График отпусков 2018
Декретный отпуск 2018
ЕНВД 2018
Изменения для юристов 2018
Кассовые операции 2018
Командировочные расходы 2018
МСФО 2018
Налоги ИП 2018
Налоговые изменения 2018
Начисление заработной платы 2018
ОСНО 2018
Эффективный контракт 2018
Брокеру
Недвижимость



©2009-2018 Центр управления финансами. Все права защищены. Публикация материалов
разрешается с обязательным указанием ссылки на сайт. Контакты