Управление финансами
документы

1. Акт выполненных работ
2. Акт скрытых работ
3. Бизнес-план примеры
4. Дефектная ведомость
5. Договор аренды
6. Договор дарения
7. Договор займа
8. Договор комиссии
9. Договор контрактации
10. Договор купли продажи
11. Договор лицензированный
12. Договор мены
13. Договор поставки
14. Договор ренты
15. Договор строительного подряда
16. Договор цессии
17. Коммерческое предложение
Управление финансами
егэ ЕГЭ 2017    Психологические тесты Интересные тесты   Изменения 2016 Изменения 2016
папка Главная » Полезные статьи » Проведение регрессионного анализа

Проведение регрессионного анализа

Регрессионный анализ

Вернуться назад на Регрессионный анализ

Внимание!

Если Вам полезен
этот материал, то вы можете добавить его в закладку вашего браузера.

добавить в закладки

Регрессионный анализ является одним из наиболее распространённых методов обработки экспериментальных данных при изучении зависимостей в физике, биологии, экономике, технике и других областях.

Исследование объективно существующих связей между явлениями – важнейшая задача общей теории статистики. Регрессионный анализ заключается в определении аналитического выражения, в котором изменение одной величины (называемой зависимой или результативным признаком) y обусловлено влиянием одной или нескольких независимых величин (факторов) x1, x2,…, xn, а множество всех прочих факторов, также оказывающих влияние на зависимую величину, принимается за постоянные и средние значения.

Регрессия может быть однофакторной (парной) и многофакторной (множественной). Для простой (парной) регрессии в условиях, когда достаточно полно установлены причинно-следственные связи, можно использовать графическое изображение. При множественности причинных связей невозможно чётко разграничить одни причинные явления от других. В этом случае наиболее приемлемым способом определения зависимости (уравнения регрессии) является метод перебора различных уравнений, реализуемый с помощью компьютера.

После выбора вида регрессионной модели, используя результаты наблюдений зависимой переменной и факторов, нужно вычислить оценки (приближённые значения) параметров регрессии, а затем проверить значимость и адекватность модели результатам наблюдений.

Порядок проведения регрессионного анализа следующий:

• выбор модели регрессии, что заключает в себе предположение о зависимости функций регрессии от факторов;
• оценка параметров регрессии в выбранной модели методом наименьших квадратов;


• проверка статистических гипотез о регрессии.

Построим приближённую зависимость времени простоя техники от времени работы и месяца. На существование этой зависимости, причём линейной, указывает корреляционный анализ. Имея зависимость, выраженную в виде формулы, можно прогнозировать время простоя на следующий период и оценить недополученную прибыль в результате простоев, что так любят делать экономисты.

Линейный регрессионный анализ выполняется в модуле Statistics/ MultipleRegression. В стартовом диалоговом окне этого модуля при помощи кнопки Variables указываются зависимая (dependent) и независимые (independent) переменные.

В поле Inputfileуказывается тип файла с данными:

RawData – данные в виде строчной таблицы (по умолчанию);
CorrelationMatrix – данные в виде корреляционной матрицы.

В стартовом окне можно задать и дополнительные опции и параметры анализа. Например, можно выбрать определенное подмножество наблюдений для анализа или приписать вес переменным. Также можно задать и опции, которые относятся непосредственно к статистической процедуре: задать правило обработки пропущенных данных, выбрать метод анализа по умолчанию и др.

Для вывода результатов и их анализа нажмите на кнопку ОК. Система произведет вычисления, и на экране появится окно результатов. Оно имеет простую структуру: верхняя часть окна – информационная, нижняя содержит функциональные кнопки, позволяющие всесторонне просмотреть результаты анализа.


Регрессионный анализ

Dependent – имя зависимой переменной. В нашем случае это «Простой».

No. of cases – число наблюдений, по которым построена регрессия. В примере число равно 12.

Multiple R – коэффициент множественной корреляции. Эта статистика полезна в множественной регрессии, когда вы хотите описать зависимости между переменными. Она может принимать значения от 0 до 1 и характеризует тесноту линейной связи между зависимой и всеми независимыми переменными.

R – квадрат коэффициента множественной корреляции (R2), называемый коэффициентом детерминации.

Коэффициент детерминации является одной из основных статистик в данном окне, он показывает долю общего разброса (относительно выборочного среднего зависимой переменной), которая объясняется построенной регрессией. Чем ближе коэффициент детерминации к единице, тем качественнее найдена модель (объясняет поведение большего числа точек).

Коэффициент детерминации обладает существенным недостатком. При равенстве числа независимых переменных q числу наблюдений n величина R2 равна 1. По мере добавления переменных в уравнение значение R2 неизбежно возрастает. Это ведет к неоправданному предпочтению моделей с большим числом независимых переменных. Отсюда следует, что необходима поправка к R2, которая бы учитывала число переменных и наблюдений. В результате получаем скорректированный коэффициент детерминации (adjusted R).

Включение новой переменной в регрессионное уравнение увеличивает R2 не всегда, а только в том случае, когда частный F-критерий при проверке гипотезы о значимости включаемой переменной больше или равен 1. В противном случае включение новой переменной уменьшает значение коэффициентов детерминации. Таким образом, скорректированный R2 можно с большим успехом (по сравнению с R2) применять для выбора наилучшего подмножества независимых переменных в регрессионном уравнении.

F-критерий используется для оценки адекватности регрессионной модели, определяет отношение дисперсии оценки модели к дисперсии остатка.

Standard Error of estimate – стандартная ошибка оценки. Эта статистика является мерой рассеяния наблюдаемых значений относительно регрессионной прямой.

Intercept – оценка свободного члена регрессии. Значение коэффициента b0 в уравнении регрессии.

Std. Error – стандартная ошибка оценки свободного члена. Стандартная ошибка коэффициента b0 в уравнении регрессии.

F – значения F-критерия для проверки гипотезы b1=0.
df – число степеней свободы F-критерия.
p – уровень значимости.
t–t-критерий для проверки гипотезы о равенстве нулю свободного члена уравнения. Если p больше заданного уровня значимости Alpha, то гипотеза b0=0 принимается.
Beta – коэффициенты b уравнения.

В информационной части прежде всего нужно смотреть на значение коэффициента детерминации. В нашем примере он равен 0,988... Это значит, что построенная регрессия объясняет 98,8 % разброса значений переменной «Простой» относительно среднего. Это хороший результат.

Далее смотрим на значение F-критерия и уровень его значимости p. F-критерий используется для проверки гипотезы, утверждающей, что между зависимой переменной «Простой» и независимой переменной «Работа» нет линейной зависимости, т.е. b1=0, против альтернативы «b1 не равен нулю». В данном примере большое значение F-критерия 373,3964 и даваемый в окне уровень значимости p=0,0112 показывают, что построенная регрессия значима.

При помощи кнопок диалогового окна Multiple Regressions Results результаты регрессионного анализа можно просмотреть более детально. Щёлкните далее на кнопку Summary:Regression rezults (краткие результаты регрессии).

Во втором столбце таблицы (Beta) выводятся стандартизованные коэффициенты регрессии, в третьем (Std.Err. of Beta) – их стандартные отклонения. В случае множественной регрессии стандартизованные коэффициенты регрессии используются для сравнения влияния на зависимую переменную факторов, имеющих различную размерность.

В четвёртом столбце таблицы имеются оценки неизвестных параметров модели:

b0 = –705,680;
b1 = 51,152;
b2 = 0,479;
в пятом столбце (St.Err. of B) – их стандартные отклонения.

Итак, искомая модель зависимости времени простоя техники от времени работы и месяца имеет вид:

Простой = –705,680+51,152*Месяц+ 0,479*Работа

Из модели очевидна необходимость снижения сезонности работ.

В шестом и седьмом столбцах таблицы выводятся t-статистики и соответствующие уровни значимости для проверки гипотезы о равенстве нулю коэффициентов регрессии. Для нашего примера гипотеза для b0 и b2 отклоняется.

тема

документ Монархия
документ Оценка предприятий
документ Теория организации
документ Оценочная деятельность
документ Теории мотивации



назад Назад | форум | вверх Вверх

Управление финансами

важное

1. ФСС 2016
2. Льготы 2016
3. Налоговый вычет 2016
4. НДФЛ 2016
5. Земельный налог 2016
6. УСН 2016
7. Налоги ИП 2016
8. Налог с продаж 2016
9. ЕНВД 2016
10. Налог на прибыль 2016
11. Налог на имущество 2016
12. Транспортный налог 2016
13. ЕГАИС
14. Материнский капитал в 2016 году
15. Потребительская корзина 2016
16. Российская платежная карта "МИР"
17. Расчет отпускных в 2016 году
18. Расчет больничного в 2016 году
19. Производственный календарь на 2016 год
20. Повышение пенсий в 2016 году
21. Банкротство физ лиц
22. Коды бюджетной классификации на 2016 год
23. Бюджетная классификация КОСГУ на 2016 год
24. Как получить квартиру от государства
25. Как получить земельный участок бесплатно


©2009-2016 Центр управления финансами. Все права защищены. Публикация материалов
разрешается с обязательным указанием ссылки на сайт. Контакты