В ходе информационного процесса информация, циркулирующая на предприятии или в организации, подвергается той или иной обработке в зависимости от рода их деятельности. По месту возникновения выделяют входящую и выходящую, внутреннюю и внешнюю информацию. В процессе обработки информация может быть первичной и вторичной, промежуточной и результатной, при этом обрабатываемые данные преобразуются из одного вида в другой. По мере развития информационного общества трудозатраты на обработку данных возрастают и требуют совершенствования применяемых технологий.
Технология (гр. techne – мастерство, logos – учение, учение о мастерстве) – совокупность знаний о способах и средствах производственных процессов, при которых происходит необходимое качественное изменение обрабатываемых объектов.
Информационная технология – процесс, использующий совокупность средств и методов сбора, обработки и передачи данных для получения информации нового качества о состоянии объекта, процесса или явления. Сходное определение дается в ст. 2 Федерального закона № 149-ФЗ "Об информации, информационных технологиях и о защите информации": информационные технологии – процессы, методы поиска, сбора, хранения, обработки, предоставления, распространения информации и способы осуществления таких процессов и методов.
Цель информационной технологии – производство информации для ее анализа человеком и последующего принятия решений по осуществлению каких-либо действий. В более узком понимании информационная технология представляет собой совокупность четко определенных целенаправленных действий человека по переработке информации на компьютере. Технологический процесс переработки информации состоит из этапов, операций и конкретных действий оператора, выполняющего обработку данных.
В структуре возможных операций с данными можно выделить следующие:
• сбор данных и их формализация, т.е. приведение к одинаковой форме;
• фильтрация и сортировка;
• обработка и преобразование данных в соответствии с поставленной задачей;
• архивация данных, т.е. организация хранения данных в компактной, удобной и легкодоступной форме;
• защита данных – комплекс мер, направленных на предотвращение утраты данных и их модификации;
• транспортировка данных, т.е. прием и передача данных между удаленными участниками информационного процесса.
История развития информационных технологий включает несколько этапов, связанных с кардинальными изменениями в сфере обработки информации.
Первый этап связан с изобретением письменности. Средствами сбора, хранения и обработки информации здесь служили перо, чернила, бумага и книги, эффективность информационной обработки на этом этапе была крайне низкой. Изобретение книгопечатания в середине XVI в. значительно повысило эффективность обработки информации, возникли такие средства, как наборная доска и печатный станок.
На смену "ручной технологии" в конце XIX в., с появлением телеграфа, телефона, радио, пришла "механическая" технология, позволяющая оперативно передавать информацию.
Создание электрических пишущих машинок, телевидения, копировальных аппаратов, магнитофонов к середине XX в. привело к возникновению "электрических" информационных технологий.
Со второй половины XX в. и с появлением ЭВМ, а затем персонального компьютера начался новый этап в развитии информационных технологий – "электронные" технологии.
Электронная вычислительная машина – универсальное устройство ввода, вывода, накопления, обработки и передачи информации для решения вычислительных и информационных задач. Термин "компьютер" употребляется в том же смысле, что и термин "ЭВМ". ЭВМ – электронная машина, так как состоит из электронных схем, и вычислительная машина, так как обрабатывает информацию в цифровой форме, выполняя вычисления, численные арифметические и логические операции без вмешательства человека. Цифровая форма представления любых данных обеспечивает компьютеру такие свойства, как универсальность, пригодность для решения разнообразных задач.
Впервые проект аналитической машины (вычислительного автомата) в составе устройства ввода, устройства памяти, процессора, устройства вывода был предложен в XIX в. Чарльзом Бэбиджем. Он же впервые выдвинул идею программного управления такой машиной. Дальнейшее развитие этой идеи нашло свое продолжение при построении первых электронно-вычислительных машин. Функционирование ЭВМ базировалось на двоичной системе счисления для представления чисел и размещения программы управления в запоминающем устройстве. Первые ЭВМ разрабатывались в США и Англии, в континентальной Европе первая "малая электронная счетная машина" (МЭСМ) была создана в СССР.
Электронно-вычислительные машины принято классифицировать по ряду признаков.
По физическому представлению обрабатываемой информации выделяют:
Задавайте вопросы нашему консультанту, он ждет вас внизу экрана и всегда онлайн специально для Вас. Не стесняемся, мы работаем совершенно бесплатно!!!
Также оказываем консультации по телефону: 8 (800) 600-76-83, звонок по России бесплатный!
• аналоговые вычислительные машины непрерывного действия, которые работают с информацией, представленной в непрерывной (аналоговой) форме, т.е. в виде непрерывного ряда значений какой-либо физической величины (чаще всего электрического напряжения);
• цифровые вычислительные машины, которые работают с информацией в дискретной форме (цифровой);
• гибридные вычислительные машины комбинированного действия, совмещающие в себе достоинства аналоговых и цифровых вычислительных машин и использующиеся для решения задач управления сложными быстродействующими техническими комплексами.
По этапам создания ЭВМ выделяют несколько поколений развития компьютерной техники, которые формировались в течение XX в.
К первому поколению относят машины, созданные в 1950-е гг. на основе электронных ламп. В это время были разработаны отечественные машины: МЭСМ (малая электронная счетная машина), БЭСМ (большая электронно-счетная машина), "Стрела", серия "Урал", М-20. Основным применением первых ЭВМ было выполнение научно-технических расчетов.
Спустя десятилетие появились ЭВМ, созданные на дискретных полупроводниковых приборах (транзисторах). Второе поколение ЭВМ применялось для технических и экономических расчетов.
Машины третьего поколения появились в 1970-е гг. и были разработаны на полупроводниковых интегральных схемах с малой и средней степенью интеграции (сотни, тысячи транзисторов в одном корпусе). Это поколение ЭВМ начало применяться в управлении и проведении экономических расчетов.
Четвертое поколение ЭВМ сформировалось в 1980-е гг. на базе больших и сверхбольших интегральных схем – микропроцессоров (десятки тысяч – миллионы транзисторов в одном кристалле). Целью ЭВМ этого поколения уже было представление информации и более широкое использование в управлении.
Так, характеризуются созданием ЭВМ со многими десятками параллельно работающих микропроцессоров, позволяющих строить эффективные системы обработки знаний. Для этого поколения характерны применение персональных компьютеров, телекоммуникационная обработка данных, компьютерные сети, широкое применение систем управления базами данных, элементы интеллектуального поведения систем обработки данных и устройств.
Создание оптоэлектронных ЭВМ с массовым параллелизмом и нейронной структурой относится к началу XXI в. Предполагается, что в компьютерах следующего поколения произойдет качественный переход от обработки данных к обработке знаний.
Получите консультацию: 8 (800) 600-76-83
Звонок по России бесплатный!
Не забываем поделиться:
Как известно, все исконно русские женские имена оканчиваются либо на «а», либо на «я»: Анна, Мария, Ольга и т.д. Однако есть одно-единственное женское имя, которое не оканчивается ни на «а», ни на «я». Назовите его.