Для анализа экономических данных могут применяться все разделы прикладной статистики, а именно:
• статистика случайных величин;
• многомерный статистический анализ;
• статистика временных рядов и случайных процессов;
• статистика объектов нечисловой природы, в том числе статистика интервальных данных.
Перечисленные четыре области выделены на основе математической природы элементов выборки: в первой из них это - числа, во второй - вектора, в третьей - функции, в четвертой - объекты нечисловой природы, т.е. элементы пространств, в которых нет операций сложения и умножения на число. Примерами объектов нечисловой природы являются значения качественных признаков, бинарные отношения (ранжировки, разбиения, толерантности), последовательности из 0 и 1, множества, нечеткие множества, интервалы, тексты.
Как и для применений статистических методов в иных областях, в эконометрике решаются задачи описания данных (в том числе усреднения), оценивания, проверки гипотез, восстановления зависимостей, классификации объектов и признаков, прогнозирования, принятия статистических решений и др.
Однако в некоторых отношениях экономические данные отличаются от технических или астрономических, и эти отличия необходимо учитывать при выборе методов анализа конкретных экономических данных.
Многие экономические показатели неотрицательны. Значит, их надо описывать неотрицательными случайными величинами. А вот нормальные распределения принципиально не подходят, поскольку для них вероятность отрицательных значений всегда положительна.
Экономические процессы развиваются во времени, поэтому большое место в эконометрике занимают вопросы анализа и прогнозирования временных рядов, в том числе многомерных. При этом в одних задачах больше внимания уделяют изучению трендов (средних значений, математических ожиданий), например, при анализе динамики цен. В других же - важны отклонения от средней тенденции, например, при применении контрольных карт (карт Шухарта, кумулятивных сумм и др.). Однако в целом спектральный анализ и выделение различных периодов, циклов и типов волн менее распространены, чем, скажем, в биометрике и медицине.
В экономике доля нечисловых данных существенно выше, чем в технике и технологии, соответственно больше применений для статистики объектов нечисловой природы (ниже разберем это утверждение подробнее).
Количество изучаемых объектов в экономическом исследовании часто ограничено в принципе, поэтому обоснование вероятностных моделей в ряде случаев затруднено. Уникальные объекты, например, город Москва, трудно рассматривать как элемент выборки из генеральной совокупности с каким-то определенным распределением, поскольку подобное рассмотрение противоречит здравому смыслу. Вспоминается давняя обложка журнала "Крокодил", на которой изображены два хозяйственника с монетой в руках: "Если упадет орлом, будем строить завод, если решкой - не будем". Подобная рандомизация решений выглядит бессмысленной при принятии ровно одного решения, однако при контроле качества в массовом производстве такой подход оправдан.
Поэтому в эконометрике часто применяются детерминированные методы анализа данных, в отличие от, например, технических наук, в которых обычным является использование вероятностных моделей. Неопределенность приходится описывать не в терминах вероятностно-статистических моделей, а иными способами, например, в терминах теории нечеткости (fuzzy sets theory) или математики и статистики интервальных данных.
Есть два принципиально различных подхода к изучению поведения организаций и людей. Согласно первому из них вполне допустимо описывать действия человека в вероятностных терминах, например, считать его ответ на заданный вопрос случайной величиной. Сторонники второго подхода полагают, что поведение человека или организации является детерминированным, определяется теми или иными причинами, а случайность при анализе выборки возникает лишь из-за случайности при отборе лиц для опроса или предприятий для изучения. Если ответ на вопрос имеет вид "да" - "нет", то число ответов "да" при первом подходе, как известно, имеет биномиальное распределение, а при втором - гипергеометрическое. К счастью для эконометриков, при увеличении объема генеральной совокупности эти два распределения сближаются (если доля выборки в генеральной совокупности мала, например, меньше 10%, то вместо гипергеометрического распределения можно использовать биномиальное), так что при обоих подходах можно применять одни и те же эконометрические методы, не тратя сил на решение философского вопроса о детерминированности или случайности поведения экономического агента-человека или организации.
Итак, специфика эконометрики проявляется не в перечне применяемых для анализа конкретных экономических данных статистических методов, а в частоте использования тех или иных методов.
Получите консультацию: 8 (800) 600-76-83
Звонок по России бесплатный!
Не забываем поделиться:
Ничего не пишите и не используйте калькулятор, и помните - вы должны отвечать быстро. Возьмите 1000. Прибавьте 40. Прибавьте еще тысячу. Прибавьте 30. Еще 1000. Плюс 20. Плюс 1000. И плюс 10. Что получилось? Ответ 5000? Опять неверно.