Управление финансами Получите консультацию:
8 (800) 600-76-83

Бесплатный звонок по России

документы

1. Введение продуктовых карточек для малоимущих в 2021 году
2. Как использовать материнский капитал на инвестиции
3. Налоговый вычет по НДФЛ онлайн с 2021 года
4. Упрощенный порядок получения пособия на детей от 3 до 7 лет в 2021 году
5. Выплата пособий по уходу за ребенком до 1,5 лет по новому в 2021 году
6. Продление льготной ипотеки до 1 июля 2021 года
7. Новая льготная ипотека на частные дома в 2021 году
8. Защита социальных выплат от взысканий в 2021 году
9. Банкротство пенсионной системы неизбежно
10. Выплата пенсионных накоплений тем, кто родился до 1966 года и после
11. Семейный бюджет россиян в 2021 году

О проекте О проекте    Контакты Контакты    Загадки Загадки    Психологические тесты Интересные тесты
папка Главная » Предпринимателю » Нанотехнологии

Нанотехнологии

Статью подготовил директор по развитию предпринимательства и конкуренции ОАО "Акса" Корчагин Юлиан Андриянович. Связаться с автором

Нанотехнологии

Для удобства изучения материала статью разбиваем на темы:
Не забываем поделиться:


1. Нанотехнологии
2. Достижения нанотехнологий
3. Отрасли нанотехнологий
4. Нанотехнологии в жизни общества
5. Нанотехнологии будущего
6. Нанотехнологии в медицине
7. Развитие нанотехнологий
8. Современные нанотехнологии
9. Применение нанотехнологий
10. Новые нанотехнологии
11. Использование нанотехнологий
12. Сфера нанотехнологий
13. Направления нанотехнологий
14. Нанотехнологии в строительстве
15. Нанотехнологии в производстве

Нанотехнологии

Видели ли вы когда-нибудь монитор, толщина которого меньше миллиметра? А несгораемую и непромокаемую бумагу? Или одежду, которую невозможно испачкать? Это не фантастика! Это то, что ожидает нас в недалеком будущем. Такие необычные предметы могут подарить человеку нанотехнологии. То, что технология - это способ производства какого-либо объекта, знает каждый. А вот что означает приставка «нано»? «Нано»- одна миллиардная доля чего-либо. Один нанометр – миллиардная доля метра. 1нм = 0,000000001 м. Попробуем представить себе объекты такого размера. Нанометр меньше метра примерно настолько, насколько грецкий орех меньше земного шара. Размеры в несколько нанометров имеют большие молекулы, например, белки. Атомы и обычные молекулы меньше, они измеряются десятыми долями нанометров. Нанотехнология - комплекс методов, который позволяет создавать объекты наноразмеров (от 1 до 100 нм). Такие объекты имеют особые свойства. Именно эти свойства наноматериалов позволят использовать их для новейших научных достижений. Уже сейчас нанотехнологии - наиболее перспективное и финансируемое направление в мировой науке.

Вот только некоторые области, в которых нанотехнологии обещают прорыв:

Наносенсоры обеспечат прогресс в ранней диагностике заболеваний. Это увеличит шансы на выздоровление. Мы сможем победить рак и другие болезни. Старые лекарства от рака уничтожали не только больные клетки, но и здоровые. С помощью нанотехнологий лекарство будет доставляться непосредственно в больную клетку.

Нанодатчики строительных конструкций будут следить за их прочностью, обнаруживать любые угрозы целостности. Объекты, построенные с использованием нанотехнологий, смогут прослужить в пять раз дольше, чем современные сооружения. Дома будут подстраиваться под потребности жильцов, обеспечивая им прохладу летом и сохраняя тепло зимой.

Мы меньше будем зависеть от нефти и газа. У современных солнечных батарей КПД около 20%. С применением нанотехнологий он может вырасти в 2-3 раза. Тонкие нанопленки на крыше и стенах смогут обеспечить энергией весь дом (если, конечно, солнца будет достаточно).

Всю громоздкую технику заменят роботы – легко управляемые устройства. Они смогут создавать любые механизмы на уровне атомов и молекул. Для производства машин будут использоваться новые наноматериалы, которые способны снижать трение, защищать детали от повреждений, экономить энергию. Это далеко не все сферы, в которых могут (и будут!) применяться нанотехнологии. Ученые считают, что появление нанотехнологий – начало новой Научно-технической революции, которая сильно изменит мир уже в ХХI веке. Стоит, правда, заметить, что в реальную практику нанотехнологии входят не очень быстро. Не так много устройств (в основном электроника) работает "с нано". Отчасти это объясняется высокой ценой нанотехнологий и не слишком высокой отдачей от нанотехнологической продукции.

Достижения нанотехнологий


интересное на портале
документ Тест "На сколько вы активны"
документ Тест "Подходит ли Вам ваше место работы"
документ Тест "На сколько важны деньги в Вашей жизни"
документ Тест "Есть ли у вас задатки лидера"
документ Тест "Способны ли Вы решать проблемы"
документ Тест "Для начинающего миллионера"
документ Тест который вас удивит
документ Семейный тест "Какие вы родители"
документ Тест "Определяем свой творческий потенциал"
документ Психологический тест "Вы терпеливый человек?"


Металл, поддающийся управлению с помощью электричества, напоминает сплав, из которого сделан злобный робот из «Терминатор 2». Вещество активно реагирует на раздражители и изменения вокруг. Под воздействием тока в гидроксиде натрия или соляном растворе он движется, может создавать непростые фигуры. Материал имеет биометрические свойства, он может «создать видимость» что производит биохимическую реакцию, но на самом деле он вовсе не имеет биологических составных. Металл может двигаться и сам, без электроимпульсов, если произойдёт несбалансированная нагрузка и раз в давлении на разные стороны капли металла.

Пластыри вместо укола. Уколы, возможно, уйдут в прошлое, ведь исследователи создают пластыри, которые впитают лекарство в организм пациента без уколов. Пластырь будет иметь привычные размеры, и через кожу, скажем, руки, переместят некое количество наночастиц в организм. Размер частиц — меньше 20 нанометров, они сами найдут вредные клетки, устранят их и выведутся из организма естественными путями. Учёные мечтают применять эти частицы для излечения рака, ведь частицы найдут именно раковые клетки, и не тронут здоровые. Проект учёных Атифа Саеда и Закарии Хуссейна из Нью-Йоркского университета называется «NanJect». Конечно, всегда остаются опасения, что наночастицы вдруг взбесятся под воздействием, например, электрических импульсов мозга, и перестанут различать здоровые и больные клетки, но, с другой стороны, современные лекарства могут быть не менее опасны, так что время покажет, кто прав — скептики или исследователи.

Очистка воды. Разлив нефти и аварии нефтяных танкеров – катастрофа для океана, сравнимая по масштабам с Хиросимой, а то и хуже. Миллионы литров нефти растекаются на десятки тысяч километров вокруг, делая воду непроницаемой для кислорода. Гибнут водоросли, рыба, птицы.

Чтобы подобного не случалось, исследователи работают над плёнкой, толщиной в нанометры, чтобы она, в сочетании с сеткой из нержавейки отталкивала нефть, очищая поверхность воды. Исследователи нашли пример в природе – лисья лотоса отталкивают нефть, именно поверхность этих растений и пытаются воссоздать учёные.

Очистка воздуха для подводных лодок. Один и тот же воздух возвращается в каждые лёгкие всего экипажа подлодки, производя перед тем очистку. Чтобы очистить воздух, задействуют амины, которые пахнут аммиаком. Чтобы облегчить жизнь подводникам, и всем, кому приходиться работать в закрытых помещениях, исследователи создали SAMMS, которая предполагает очистку наночастицами в гранулах из керамики. Пористость вещества поможет поглощать ему углекислый газ. Столовая ложка этого вещества может очистить место, площадью как футбольное поле.

Нанопроводники. Твёрдая наночастица сможет передавать ток в разных направлениях, сможет заместить собой работу выпрямителей тока, переключателей и диодов. Такая частица будет окружена отрицательно заряженными атомами, а электрозаряд будет размещать их в нужном порядке вокруг частицы. Материалы помогут сделать электронику более эффективной и помогут объединять разные технологии.

Нанозарядка. Зарядка будет впитывать из окружающего пространства кинетическую энергию, и будет направлять её в устройство. Пьезоелектрическое вещество, лежащее в основе этой технологии, поможет создавать электричество, используя собственное механическое напряжение. Исследователи Висконсинского университета считают, что этот прибор сможет заряжать всё – от автомобилей, заканчивая производственные препараты и телефоны.

Химический 3D-принтер. Мартин Берк из Иллинойского университета любит создавать удивительные химические вещества, имея в своём арсенале набор разных молекул. Таким образом можно использовать молекулы, которыми пользуются в медицине, чтобы сделать LED-диоды, солнечные батареи и химических элементы. Пока такой принтер создать будет непросто, но однажды, мечтают учёные, они смогут сделать такие принтеры домашними приборами для создания медикаментов.

Отрасли нанотехнологий


Самое читаемое за неделю

документ Введение ковидных паспортов в 2021 году
документ Должен знать каждый: Сильное повышение штрафов с 2021 года за нарушение ПДД
документ Введение продуктовых карточек для малоимущих в 2021 году
документ Доллар по 100 рублей в 2021 году
документ Новая льготная ипотека на частные дома в 2021 году
документ Продление льготной ипотеки до 1 июля 2021 года
документ 35 банков обанкротятся в 2021 году


Задавайте вопросы нашему консультанту, он ждет вас внизу экрана и всегда онлайн специально для Вас. Не стесняемся, мы работаем совершенно бесплатно!!!

Также оказываем консультации по телефону: 8 (800) 600-76-83, звонок по России бесплатный!

Огромное количество технологий, которыми ознаменовалось двадцатое столетие, на рубеже в 21 в. плавно перешло на кардинально новый уровень. И если раньше, еще двадцать лет назад, большинство электронных гаджетов оставались на грани фантазии, то сейчас, они не только обрели вполне конкретную форму, но и положили начало развитию так называемых инновационных подходов во всех научных отраслях.

Особую популярность в последнее время приобретают так называемые, нанотехнологии. Ученые дают настолько положительные прогнозы относительно развития нанотехнологий, то берутся составить примерный хронографический порядок (вплоть до 2050 года) их распространения и совершенствования.

Прежде чем приступить непосредственно к прогнозам развития, следует дать определение самому понятию «нанотехнологии».

Нанотехнологиями называют отдельную самостоятельную отрасль прикладной науки, которая позволяет видоизменять структуру веществ, тем самым позволяя создавать кардинально новые формы. Нанотехнологии — это фундаментальные знания, хотя бы потому, что в их основе лежат методы, позволяющие изменить атомную структуру материала. Другими словами, ученые, определенным образом воздействуя на интересующие их соединения, меняют их связи, вызывая последовательные метаморфозы с неким веществом или материалом.

Чаще всего, процесс происходит в масштабе 1 нм (нанометр, отсюда и назв.). 1 нанометр = 1. Ну а что касается истории развития, то хотя единого мнения на этот счет не существует, большинство считает, что начало как самостоятельной отрасли дал Ричард Фейнман, являющийся автором знаменитой в мире физике «Теории множеств» (There’s Plenty of Room at the Bottom).

Мельчайшие частицы вещества, имеющие в размер, в диапазоне от 1 до 100 нм, называют «наночастицами». Наночастицы в настоящее время оказывает огромное влияние на медицину, генетику, биологии, физику, химию и многие другие науки.

В настоящее время существует несколько основных подходов, описывающих потенциально возможное будущее, которое ждет нанотехнологии. Но о них по порядку. Попытка обобщить все имеющиеся сведения и составить наиболее точный прогноз впервые была предпринята, на американском сайте Nanotechnology News Network. Прогноз охватывает период до 2050 год.

Тут же стоит отметить, что большинство прогнозов начали сбываться, и, что самое интересное, намного раньше ожидаемого времени. Основные силы были брошены на описание таких разделов, как наноэлектроника, наногенетика, квантовые вычисления, теория образовании мира (физ.) и многие другие. Есть те, которые не получили должного развития; но в целом, ситуация остается стабильной.

Есть несколько основных направлений, по которым ведутся прогнозы, к ним относится:

• Механосинтез;
• Автоматизированная система ассемблеров и дисассемблеров;
• Новейшие орбитальные станции;
• Утилизация отходов.

Механосинтез. Первый и самый ожидаемый проект в развитии нанотехнологий - это создание специального управляемого механического синтеза, который позволит без вмешательства человека, составлять нужные сочетания молекул, используя атомное приближение. Приближаться атомы будут до тех пор, пока не начнут функционировать соответствующие природные связи между атомами. Почему такого механосинтеза пока нет?

Потому что, для того, чтобы создать нужный механосинтез, нужен для начала наноманипулятор, основной задачей которого является захват атомов и сцепление их определенным образом в молекулы. Такой наноманипулятор может действовать в пределах определенного радиуса, равного 100 нм. Что касается самого наноманипулятора, им должен руководить либо робот, осуществляющий процесс сборки, либо очень мощный компьютер.

Сейчас же такого компьютера пока нет в природе, а процесс присоединения атомов производится с помощью электронного зонда, которым управляет человек. Такой тип интерфейса «человек - мощный компьютер — манипулятор», является весьма неэффективным, так как не является полностью автоматизированной.

По мнению экспертов, создание такого компьютера - эта задача, которая будет решена. Это объясняется тем, что уже на сегодняшний момент имеется предварительный проект компьютера и разработан он учеными из Института Молекулярного Производства. Как только такой компьютер будет изобретен и собран, в этот момент, согласно проекту должен быть собран аналогичный компьютер, но уже без вмешательства человека. Другими словами, один компьютер «сможет» собрать другой точно такой же компьютер.

Автоматизированная система ассемблеров и дисассемблеров. Следующим этапом в развитии нанотехнологий является полностью автоматизированная система, которая будет в состоянии собирать любой заданный объект без исключения. Основой для ее работы будет служить специально разработанная трехмерная модель сетки, в которой размещены различные атомы. Для начала команда роботов-дизассемблеров будет разбирать объект на составляющие части, после чего противоположная команда роботов — ассемблеров будет собирать этот же самый объект, но с другими заданными параметрами конфигурации. Это, по мнению опытных экспертов, наступит не раньше следующего десятилетия. Возникает резонный вопрос, какова конечная цель такой системы? Ответ — автоматизированная система, позволит полностью исключить необходимость использования огромного количества комбинатов и фабрик, занимающихся производством широкой номенклатуры товаров и продуктов. Автоматизированная система будет оснащена специально разработанным комплексом сборки, который будет производить репликацию продуктов. Таким образом, в качестве примера можно назвать создания нанороботов, а также запасным частям и комплектующим к ним. На данный момент времени, нанороботы не могут быть созданы.

Новейшие орбитальные станции. Еще одним пунктом в списке ученых является создания качественно новых орбитальных станций, а также специальные роботы-амебы будут осуществлять процесс их освоения. Если говорить о более далеких прогнозах, то к 2045-2050 году, по мнению ученых, наука дойдет до такой степени, что с помощью нанотехнологий, будет возможно осуществлять процессы глубоководного строительства. Основное преимущество заключается в том, что при помощи свойства репликации, можно будет избежать глобальной мировой проблемы нехватки сырья, материалов и продуктов. Сам процесс создания и конструирования машин и механизмов переходит на качественно новый уровень. Также, при помощи применения нанотехнологий, возможен будет процесс преобразования различных видов энергии с высоким уровнем КПД, а также создавать специальные приемные устройства, которые будут видоизменять солнечную энергию в кинетическую энергию с аналогичным высоким уровнем коэффициента полезного действия.

Утилизация отходов. И, наконец, еще один важный прогнозируемый скачок — это использования нанотехнологий для максимально возможной оптимизации и рационализации процесса обработки отходов. В настоящее время, это важно, так как экологическая ситуация в мире оставляет желать лучшего и большего. Известный везде процесс под названием «recycling», станет более продуктивным и действенным. Это приведет к тому, что сырьевые запасы человечества не только резко увеличатся в объеме, но и будут постепенно наращиваться. Но, это пока, в наиболее долгой перспективе.

Подводя итог всему вышесказанному, можно сделать вывод, что основными направлениями, по которым будет проходить развитие нанотехнологий, станут физика, электроника и экология.

Что касается генной инженерии, биохимии и химии, — это совершенно отдельная отрасль, в которой нанотехнологии будут охватывать все большее и большее пространство!

Нанотехнологии в жизни общества

Многие социологи утверждают, что нанотехнологии оказывают огромное влияние на жизнь общества. С этим мнение невозможно не согласиться. Если бы мы, к примеру, захотели объяснить жителю 18 века, как устроен компьютер либо даже телевизор, то он, конечно же, посчитал бы нас безумными. Представьте, что за последние лет 50 количество технических новинок, значительно повлиявших на жизнь социума, оказалось намного большим, чем за предшествующие пять тысячелетий. Ускоренное развитие электроники и техники предоставляет человеку широкий спектр возможностей, но даже эти достижения нам кажутся не столь значительными по сравнению с теми переменами, которые возможны благодаря нанотехнологиям.

Однако развитие нанотехнологий влечет за собой и определенные проблемы для общества. Нужно понять, насколько быстро социум сможет адаптироваться к достижениям данной сферы науки, окажутся ли люди достаточно мудрыми в использовании этих уникальных достижений. Рассмотрение этих вопросов определит будущую конкурентоспособность некоторых людей, корпораций и даже государств. Именно способность умело пользоваться достижениями нанотехнологий окажется стратегическим преимуществом. Те общественные организации, которые смогут корректно управлять социальными системами, имеющими связь с нанотехнологиями (например, образование, изучение, развитие), станут успешными и процветающими в третьем тысячелетии. Нанотехнология окажут такое же влияние на жизнь общества в 21 в., как и делают ныне цифровые технологии.

Использование нанотехнологии привнесет разительные перемены в общественную жизнь. Потребительские товары будут более долговечными, качество улучшится. Это зависит от повышенной прочности наноматериалов.

Медицинское обслуживание будет значительно дешевле, эффективнее. Появится возможность предотвращать возникновение многих болезней. Продолжительность жизни увеличится. Будут изобретены новые лекарства и диагностическая аппаратура.

Предметы вокруг нас будут «разумными». В одежде будут встроены электронные устройства, автомобили будут сами двигаться, возникнет прочная связь между телефоном, телевизором и компьютером.

Экономика также подвергнется переменам. Работа в скором будущем будет основана главным образом не на производстве продуктов, а на обслуживании и применении знаний. Нанотехнологии изменят мировую экономическую ситуацию спроса и предложения, а это в свою очередь повлияет на разнообразие при выборе стиля жизни и занятий.

Нанотехнологии будущего

Выступая перед своими коллегами по американскому Физическому обществу, Ричард Фейнман предсказал, что в ближайшем будущем техническая цивилизация вступит в новый этап, центральным звеном которого станет управление объектами сверхмалых размеров, а точнее – на атомарном и молекулярном уровнях. Прошло около пятидесяти лет, и предсказанный Фейнманом этап, действительно, наступил, а управление сверхмалыми объектами вылилось в особые отрасли науки и техники, обозначенные общим для них словом «нанос» – нанотехнология, наноматериалы, нанотехника и так далее.

Ричард Фейнман выступал перед американским Физическим обществом, когда «правила бал» ламповая радиотехника, а реактивная пассажирская авиация делала только первые шаги. Так что за пределами чистой науки пророчества Фейнмана выглядели несерьезной фантазией и соответствующим образом воспринимались. Однако во второй половине XX века миниатюризация научной и производственной техники совершила гигантский скачок. Наиболее наглядно он проявился в электронике, где расцвела микротехника, оперирующая лазерами, кристаллами, чипами и тому подобной «мелочью». В свою очередь, это подготовило возможности работы с объектами атомарных и молекулярных размеров. Среди этих возможностей следует отметить выработку теоретических основ и создание необходимых инструментов – как, например, микроскопа, способного показывать отдельные атомы, или же устройств, позволяющих измерять сверхмалые объекты. И тогда же возникло слово нанотехнология, указывающая своим «нано», что речь идет о миллионномалом в миллионной степени.

Еще в своей лекции Фейнман обратил внимание на огромную информационную емкость объектов наномира и предположил возможность создания атомарного и молекулярного размера устройств, способных выполнять сложнейшую работу в микромире. Наиболее очевидная область применения таких устройств – компьютерная техника. Впоследствии Фейнман заметил, что компьютерные компоненты для ускорения работы надо всячески уменьшать. Со временем это и произошло, когда в компьютерах вместо микроскопических кристаллов кремния стали использовать атом водорода, соответствующим образом обработанный. А, внедряя в кристалл или молекулу атомы другой материи, нанотехнологи смогли получать вещества с рекордными эксплуатационными характеристиками или же вообще с совершенно необычными свойствами.

На сегодняшний день наиболее наглядно достижения нанотехнологии проявляются в уменьшении чипов, что позволяет в несколько раз уменьшить компьютерную аппаратуру и потребляемую ею энергию. И то, и другое – крайне важно для дальнейшего развития, например, космонавтики. Со временем нанотехнология, видимо, вообще изменит всю современную технику.

Что же касается материалов и веществ, созданных с помощью нанотехнологии и обладающих особыми свойствами, то именно таким образом создали сверхпрочные тросы, необходимые для работы в космосе, не пачкающиеся ткани, неуязвимые лакокрасочные покрытия, вечную, не сохнущую резину и многое другое.

Когда на рубеже XX и XXI века американские физики Джеймс Тур и Марк Рид показали, что отдельная молекула способна действовать так же, как целая молекулярная цепочка, это открыло путь для создания различных устройств в молекулярных размерах. О такого рода нанотехнологии говорил Чад Миркин – директор Института нанотехнологии в Северо-западном университете: «Произошли огромные перемены в нашей инженерной и научной работе и, в особенности – в медицине. Так что, я считают, что во многих отношения имеют место революционные преобразования».

Уже сейчас нанотехнологи пытаются создать молекулярного размера устройство, которое можно будет вживить в организм, где оно будет действовать подобно, скажем, фагоциту. То есть – со снайперской точностью будет находить и уничтожать болезнетворные микробы и вирусы, а также – больные клетки. Помимо безоперационного уничтожения злокачественных опухолей, такого рода устройства можно будет использовать для локального «ремонта» органических повреждений и высокоточной доставки доз лекарств в определенные органы.

Правда, уже раздаются предостерегающие голоса о том, что пока неизвестны побочные эффекты такого вживления, и что вред от него может перевесить пользу. Но исполнительный директор Центра биологических и экологических нанотехологий при Университете Райса Кристен Кулиновский считает, что, если и будут нежелательные побочные эффекты, их сумеют устранить: «Мы полны оптимизма в том отношении, что инженеры и ученые сумеют создать такие наноустройства, которые будут полезны для здоровья и при этом не нанесут никакого вреда организму».

Энтузиасты нанотехнологии считают, что работа с объектами сверхмалых размеров даст ключ к глобальному решению проблемы бедности. Так, например, использование наноматериалов и наноаппаратуры способно решить задачи эффективной очистки воды, хранения экологически чистого топлива и увеличения плодородности почв.

Уже сегодня на рынке имеются сотни товаров, изготовленных с помощью нанотехнологии. На данный момент производством нанопродукции занято более тысячи предприятий. Половина из них – в Соединенных Штатах. Но каковы бы ни были нынешние успехи, в научных и производственных кругах единодушно считают, что дальнейшее использование нанотехнологии требует дальнейших серьезных усилий.

Нанотехнологии в медицине

Рассматривая отдельный атом в качестве кирпичика или "детальки" нанотехнологи ищут практические способы конструировать из этих деталей материалы с заданными характеристиками. Многие компании уже умеют собирать атомы и молекулы в некие конструкции.

В перспективе, любые молекулы будут собираться подобно детскому конструктору. Для этого планируется использовать нано-роботов (наноботов). Любую химически стабильную структуру, которую можно описать, на самом деле, можно и построить. Поскольку нанобот можно запрограммировать на строительство любой структуры, в частности, на строительство другого нанобота, они будут очень дешевыми. Работая в огромных группах, наноботы смогут создавать любые объекты с небольшими затратами, и высокой точностью.

В медицине проблема применения нанотехнологий заключается в необходимости изменять структуру клетки на молекулярном уровне, т.е. осуществлять "молекулярную хирургию" с помощью наноботов.

Ожидается создание молекулярных роботов-врачей, которые могут "жить" внутри человеческого организма, устраняя все возникающие повреждения, или предотвращая возникновение таковых.

Манипулируя отдельными атомами и молекулами, наноботы смогут осуществлять ремонт клеток.

Прогнозируемый срок создания роботов-врачей, первая половина XXI века.

В действительности наномедицины пока еще не существует, существуют лишь нанопроекты, воплощение которых в медицину, в конечном итоге, и позволит отменить старение.

Несмотря на существующее положение вещей, нанотехнологии - как кардинальное решение проблемы старения, являются более чем перспективными.

Это обусловлено тем, что нанотехнологии имеют большой потенциал коммерческого применения для многих отраслей, и соответственно помимо серьезного государственного финансирования, исследования в этом направлении ведутся многими крупными корпорациями.

Наноботы или молекулярные роботы могут участвовать (как наряду с генной инженерией, так и вместо нее) в перепроектировке генома клетки, в изменении генов или добавлении новых для усовершенствования функций клетки.

Важным моментом является то, что такие трансформации в перспективе, можно производить над клетками живого, уже существующего организма, меняя геном отдельных клеток, любым образом трансформировать сам организм!

Описание нанотехнологии может показаться притянутым за уши, возможно, потому что ее возможности столь безграничны, но специалисты в области нанотехнологии отмечают, что на сегодняшний день не было опубликовано ни одной статьи с критикой технических аргументов Дрекслера. Никому не удалось найти ошибку в его расчетах. Между тем, инвестиции в этой области (уже составляющие миллиарды долларов) быстро растут, а некоторые простые методы молекулярного производства уже вовсю применяются.

Нанотехнологии могут привести мир к новой технологической революции и полностью изменить не только экономику, но и среду обитания человека. В рамках этой статьи мы рассматриваем лишь перспективность этих технологий для отмены старения людей.

Вполне возможно, что после усовершенствования для обеспечения "вечной молодости" наноботы уже не будут нужны или они будут производиться самой клеткой.

Для достижения этих целей человечеству необходимо решить три основных вопроса:

1. Разработать и создать молекулярных роботов, которые смогут ремонтировать молекулы.
2. Разработать и создать нанокомпьютеры, которые будут управлять наномашинами.
3. Создать полное описание всех молекул в теле человека, иначе говоря, создать карту человеческого организма на атомном уровне.

Основная сложность с нанотехнологией - это проблема создания первого нанобота. Существует несколько многообещающих направлений.

Одно из них заключается в улучшении сканирующего туннельного микроскопа или атомно-силового микроскопа и достижении позиционной точности и силы захвата. - Другой путь к созданию первого нанобота ведет через химический синтез. Возможно, спроектировать и синтезировать хитроумные химические компоненты, которые будут способны к самосборке в растворе. - И еще один путь ведет через биохимию. Рибосомы (внутри клетки) являются специализированными наноботами, и мы можем использовать их для создания более универсальных роботов.

Группа нанотехнологов из института предвидения заявила, что стремительный рост нанотехнологий выходит из-под контроля, но в отличие от Билла Джойа, вместо простого запрета на развитии исследований в этой области, они предложили установить правительственный контроль над исследованиями.

Такой надзор, может предотвратить случайную катастрофу, например когда наноботы создают сами себя (до бесконечности), потребляя в качестве строительного материала все на своем пути, включая заводы, домашних животных и людей.

Рей Курцвейл - появится возможность поместить внутри кровеносной системы миллиарды нанороботов размером с клетку, по оценкам Роберта Фрайтаса, ведущего ученого в области наномедицины, это случится не ранее, чем в 2030-2035 году.

Эти наноботы смогут тормозить процессы старения, лечить отдельные клетки и взаимодействовать с отдельными нейронами. Так ассеблеры практически сольются с нами.

Развитие нанотехнологий

Интенсивные исследования в области нанотехнологий, активизировавшиеся на рубеже XX—XXI вв., стали двигателем происходящих ныне кардинальных изменений в промышленном производстве, привели к качественному скачку в развитии методов и средств обработки информации, получения электрической энергии, синтеза новых материалов на основе передовых научных подходов к познанию материи. Еще до наступления «наноэры» люди сталкивались с наноразмерными объектами и протекающими на атомно-молекулярном уровне процессами, использовали их на практике. Например, на наноуровне происходят биохимические реакции между макромолекулами, из которых состоит все живое, катализ в химическом производстве, брожение, идущее при изготовлении вина, сыра, хлеба. Однако так называемая «интуитивная нанотехнология», которая первоначально развивалась стихийно, без надлежащего понимания природы происходящего, не могла быть надежным фундаментом в будущем. Поэтому все большую актуальность приобретают научные изыскания, расширяющие горизонты наномира и направленные на создание принципиально новых продуктов и ноу-хау.

Системные исследования наноразмерных объектов берут свое начало в XIX в., когда английский физик Майкл Фарадей впервые изучил свойства коллоидных растворов нанодисперсного золота и тонких пленок на его основе. Интересно отметить пример своеобразного предвидения, сделанного писателем Николаем Лесковым в повествовании о тульском мастере Левше, сумевшем подковать «аглицкую» блоху «наногвоздями», которые можно было разглядеть только в «мелкоскоп» с увеличением в 5 млн. раз, что соответствует возможностям современной высокоразрешающей микроскопии (на это первым обратил внимание российский ученый, специалист в области наноматериаловедения Ростислав Андриевский). В первой половине ХХ в. зародилась и получила развитие техника исследования нанообъектов. Предложена схема устройства оптического микроскопа ближнего поля.

Впервые создан просвечивающий электронный, сканирующий электронный микроскоп. Во второй половине XX в. начала формироваться принципиальная научная и технологическая база для получения и применения наноструктур и наноструктурированных материалов. Американский физик, нобелевский лауреат Ричард Фейнман прочитал ставшую впоследствии знаменитой лекцию под названием «Внизу полным-полно места: приглашение в новый мир физики», в которой впервые была рассмотрена возможность создания наноразмерных деталей и устройств совершенно новым способом — путем поштучной «атомарной» сборки. Ученый заявил: «Пока мы вынуждены пользоваться атомарными структурами, которые предлагает нам природа». И далее добавил: «Но в принципе физик мог бы синтезировать любое вещество по заданной химической формуле».

Создан оптический микроскоп ближнего поля. Ученые Герд Бинниг и Генрих Рорер, работавшие в то время в филиале IBM в Цюрихе, предложили конструкцию сканирующего туннельного микроскопа. Позже, за работы по сканирующей туннельной микроскопии они были удостоены Нобелевской премии по физике. В этом же ими был разработан атомно-силовой микроскоп. Японский ученый Норио Танигучи при обсуждении проблем обработки веществ ввел термин «нанотехнология». Американский ученый Г. Глейтер впервые использовал определение «нанокристаллический». Позже для характеристики материалов стали употреблять такие слова, как «наноструктурированный», «нанофазный», «нанокомпозиционный» и т.п.

Были теоретически рассмотрены принципиальные возможности существования особых видов наноразмерных объектов — квантовых точек и квантовых проволок. Американский физик Эрик Дрекслер в своей книге «Машины созидания: пришествие эры нанотехнологии», основываясь на биологических моделях, ввел понятие о молекулярных роботах, а также развил предложенные Фейнманом идеи нанотехнологической стратегии «снизу вверх». Мощным стимулом для активизации направления стало создание принципиально новых углеродных наноматериалов. Долгое время считалось, что существуют две единственные полиморфные модификации углерода — графит и алмаз. Однако, как оказалось, пределы полиморфных превращений данного элемента этим не ограничиваются, свидетельством чему являются весьма необычные по своей структуре и свойствам фуллерены и углеродные нанотрубки. Впервые возможность существования фуллеренов была предсказана японскими учеными Эйджи Осавой и Зеншо Иошидой.

Чуть позже, российские исследователи Дмитрий Бочвар и Елена Гальперн сделали первые теоретические квантово-химические расчеты такой молекулы и доказали ее стабильность. Были получены результаты астрофизических исследований спектров некоторых звезд, указывающие на существование подобных комплексов. Фуллерены были впервые синтезированы. Это удалось сделать английскому ученому Гарольду Крото и американским Роберту Керлу и Ричарду Смолли, за что они были удостоены Нобелевской премии. В ходе изучения масс-спектров паров графита, полученных в результате лазерного воздействия, ими были выявлены крупные агрегаты С60 и С70, состоящие соответственно из 60 и 70 атомов углерода. В Германии ученые В. Кретчмер и К. Фостирополус разработали технологию, позволившую получать фуллерены в достаточно больших количествах. Как выяснилось позже, такие комплексы существуют и в природе.

Они были обнаружены в природном углеродном минерале — шунгите (от названия поселка Шуньга в Карелии). Углеродные нанотрубки открыл японский ученый Сумио Иджима. Фуллерены и углеродные нанотрубки с момента их обнаружения привлекли внимание многих исследователей необычностью своей структуры и свойств. В ходе последующих изысканий были выявлены различные производные этих образований, которые получались в результате взаимодействия фуллеренов и углеродных нанотрубок с другими веществами. Было также установлено, что структуры, подобные им, могут быть образованы атомами не только углерода, но и других элементов. В частности, обнаружены фуллереноподобные наночастицы Ti8C12. В том же году были впервые синтезированы неуглеродные нанотрубки на основе MoS2 и WS2. О наличии глубоких корней, лежащих в основе нынешних нанотехнологических исследований, свидетельствует история формирования одной из самых молодых областей химии — супрамолекулярной, открывающей широкие возможности для создания различных видов молекулярных наноструктур.

Термин «супрамолекулярная химия» введен французским химиком Жаном Мари Леном. Несколько ранее, в его трудах появилось слово «супермолекула», которое было известно и употреблялось для описания более высокого уровня организации, возникающего при образовании ряда сложных молекулярных соединений. Супермолекулы состоят из компонент, которые связываются друг с другом благодаря механизму молекулярного распознавания, предполагающему наличие между ними определенной комплементарности. На возможность его существования указывал немецкий биохимик Пауль Эрлих, подчеркивая, что молекулы реагируют друг с другом строго селективно. Таких же взглядов придерживался немецкий химик-органик Эмиль Фишер, который сформулировал принцип «ключ — замок», предполагающий, что в основе молекулярного распознавания лежит геометрическая комплементарность компонент, образующих супрамолекулярный ассоциат. Вещества, которые в настоящее время рассматривают как соединения включения, ранее наблюдали разные ученые: Аксель Кронстедт, Джозеф Пристли, Б. Пелетье и В. Карстен, Гемфри Дэви. Термин «клатрат» в его современном толковании введен Г. Пауэллом.

Важный этап в становлении супрамолекулярной химии связан с открытием американским ученым Чарльзом Педерсеном краун-эфиров — молекул плоской формы, обладающих полостью, способной включать в себя молекулы другого сорта. Жан Мари Лен осуществил синтез аналогичных молекул с трехмерной полостью, названных криптандами. Американский ученый Дональд Крам сконструировал «молекулы-контейнеры» с предварительно организованной структурой — сферанды и кавитанды. За сравнительно короткий период нанотехнологии получили широкое распространение в самых различных областях человеческой деятельности. Примером тому является история развития биотехнологии. Этот термин был предложен венгерским инженером Карлом Эреки для описания процесса выращивания свиней с использованием в качестве корма сахарной свеклы. Под биотехнологией он понимал «все виды работ, при которых из сырьевых материалов с помощью живых организмов производятся те или иные продукты».

Хронология дальнейшего развития биотехнологии выглядит следующим образом: освоен промышленный выпуск пенициллина; обнаружен генетический материал — дезоксирибонуклеиновая кислота — ДНК, двойная спираль ДНК; расшифрован генетический код; выделена первая рестриктаза — фермент, способный расщеплять ДНК; синтезирован полноразмерный ген т-РНК — транспортной рибонуклеиновой кислоты; разработана технология рекомбинантных ДНК, методы определения нуклеотидной последовательности ДНК. Последующие годы ознаменовались развертыванием широкого фронта исследований в области генной инженерии, которые привели к началу работ над проектом «Геном человека». Из дифференцированной соматической клетки было впервые клонировано млекопитающее. Все это — яркий пример возможностей нанотехнологий применительно к биологическим объектам. Другим примером приложения нанотехнологий, но уже к «неживым» предметам, является история разработки идеи квантовых компьютеров.

Профессор Оксфордского университета Дэвид Дойч предложил математическую модель квантово-механического варианта машины Тьюринга. П. Шор (фирма AT&T Bell) показал, что такая машина может получить практическое воплощение. В частности, она оказалась эффективной в решении задач о разложении на множители больших чисел. В настоящее время алгоритм, предложенный Шором, широко применяется при создании различных типов квантовых компьютеров. М. Такэути (фирма «Мицубиси Дэнки») провел принципиальные эксперименты по квантовым вычислительным системам с использованием фотонов. Н. Накамура (фирма NEC) успешно изучил возможности практической работы квантового компьютера. Нынешний период в развитии нанотехнологий характеризуется активизацией исследований и разработок в данной области, вложением в них существенных инвестиций. Особенно ярко эти тенденции проявляются в ведущих индустриальных странах мира. США в данном направлении занимают лидирующие позиции.

Была утверждена Национальная нанотехнологическая инициатива (ННИ), основная идея которой была сформулирована следующим образом: «Национальная нанотехнологическая инициатива определяет стратегию взаимодействия различных федеральных ведомств США с целью обеспечения приоритетного развития нанотехнологий, которая должна стать основой экономики и национальной безопасности США в первой половине XXI в.». До принятия ННИ, специальный комитет американского Центра оценки мирового состояния технологий осуществлял мониторинг и анализ развития нанотехнологий во всех странах и выпускал для научных, технических и административных специалистов США обзорные информационные бюллетени об основных тенденциях и достижениях. Состоялось заседание Межотраслевой группы по нанонауке, нанотехнике и нанотехнологиям (IWGN), результатом которого стала разработка прогноза исследований на ближайшие 10 лет. В том же году выводы и рекомендации IWGN были поддержаны Национальным советом по науке и технике при президенте США, после чего было официально объявлено о принятии ННИ.

В преамбуле к документу тогдашний президент США Билл Клинтон заявил: «Я выделяю 500 млн. долл. в текущем финансовом году на государственную нанотехнологическую инициативу, которая позволит нам в будущем создавать новые материалы (превосходящие по характеристикам существующие в тысячи раз), записать всю информацию Библиотеки Конгресса на крошечном устройстве, диагностировать раковые заболевания при появлении нескольких пораженных клеток и добиться других поразительных результатов. Предлагаемая инициатива рассчитана по крайней мере на 20 лет и обещает привести к важным практическим результатам». Япония, как и США, уделяет нанотехнологиям большое внимание. Японская экономическая ассоциация «Кэйданрэн» организовала специальный отдел по нанотехнологиям при промышленно-техническом комитете, был разработан общий план развития нано- технологических исследований.

Его основные положения сводились к следующему: определить в качестве основных направлений «прорыва» в нанонауке информационные технологии, биотехнологии, энергетику, экологию и материаловедение; обеспечить приток крупных капиталовложений в отрасли производства, основанные на нанотехнологиях; энергично развивать исследования в указанных направлениях и внедрять их результаты в производство таким образом, чтобы они стали «флагманами» грядущей нанотехнологической революции; разработать национальную стратегию развития нанотехнологий, организовать эффективное сотрудничество промышленных, государственных и научных ведомств и организаций в данной сфере.

Страны Западной Европы начали проводить работы в области нанотехнологий в рамках соответствующих национальных программ. В ФРГ нанотехнологические изыскания поддерживаются в основном Министерством образования, науки, исследований и технологий. В Англии руководство этим направлением осуществляет Совет по физико-техническим исследованиям, а также Национальная физическая лаборатория.

Во Франции стратегию развития нанотехнологий определяет Национальный центр научных исследований. Все больше внимания нанотехнологиям уделяется в Китае, Южной Корее, ряде других государств. Нанотехнологические изыскания начали осуществляться и в странах СНГ, в частности в России и Украине, как правило, в ходе проведения государственных научных программ. В Беларуси подобные работы идут в рамках ГКПНИ «Наноматериалы и нанотехнологии». Она является продолжением предыдущей государственной программы ориентированных фундаментальных исследований с таким же названием. Сегодня трудно предвидеть все социальные последствия внедрения нанотехнологий, так же как в середине ХХ в. трудно было предсказать, что повлекут за собой разработки в области электроники и информатики. Предполагается, что в ближайшие годы бюджетные ассигнования ведущих индустриальных стран на изыскания в области нанотехнологий существенно возрастут.

При этом намеченные исследования будут нацелены на решение ряда конкретных задач: создание сверхминиатюрных запоминающих устройств с мультитерабитовым объемом памяти; повышение быстродействия компьютеров в миллион раз; создание сверхпрочных материалов и на их основе — новых транспортных средств; выпуск генетических и медицинских препаратов для диагностики и лечения раковых заболеваний, СПИДа; разработка новых материалов и процессов для защиты окружающей среды и др. О большом внимании, которое уделяет мировая научная общественность проблемам развития нанотехнологий, свидетельствует присуждение Нобелевской премии по физике за открытие и исследование одного из необычных явлений наномира — эффекта гигантского магнетосопротивления (ГМС). Премии удостоены француз Альберт Ферт и немец Петер Грюнберг, независимо друг от друга открывшие эффект ГМС.

Магнетосопротивление — это изменение электрического сопротивления проводника, вызванное действием внешнего магнитного поля. ГМС, в отличие от классического магнетосопротивления, проявляется в существенно более резком возрастании электросопротивления во внешнем магнитном поле (на десятки процентов). Физический механизм ГМС базируется на зонной теории твердого тела, в частности на спин-зависимых транспортных явлениях. Эффект наблюдается в магнитных нанопленках и нанопроволоках, которые благодаря ему можно использовать для создания высокочувствительных датчиков магнитного поля, способных реагировать на ничтожно малое его изменение. Их применение существенно изменяет промышленное производство устройств магнитной записи на жесткие диски и другие магнитные носители информации. Приведенные факты свидетельствуют, что человечество вступило в эру активного освоения нанотехнологий. Уже достигнутые результаты впечатляют, а впереди еще более интригующие перспективы.

Современные нанотехнологии

Почти каждый день мы с вами читаем о каких-то новых экспериментах и открытиях в области нанотехнологий, физического состояния человека или о том, как может быть переделан сам человек. Это началось с тех самых пор, когда Мэри Шелли написала в 1808 году историю ученого по имени Франкенштейн, создавшего монстра из частей тела и мозга трупов и вдохнувшего в него жизнь посредством электрического заряда.

Идею бессмертия посредством компьютера первым высказал академик В.М. Глушков. Рассуждал он просто. Ведь принципиально нет преград к тому, чтобы информацию, иначе человеческое “Я”, которая содержится в мозгу у человека, с его опытом, способностями, характером, переживаниями и страстями, переселить в специальную машину. Академик Н.М. Амосов считает, что можно изменить биологию человека путем создания симбиоза его интеллекта с Искусственным разумом. Эрик К. Дрекслер вместе с группой энтузиастов в конце 70-х годов, практически реализуя идею “живых машин”, начал работы в Стаффор-дском университете по нанотехнологии (нанометр — это тысячная доля микрона). Стратегия этих работ была определена им как стремление к предельной миниатюризации машин и технических систем и построение их не из кусков веществ, а непосредственно из атомов и молекул.

Дрекслер решил, что для создания самого первого поколение наномашин можно использовать тe же «строительные блоки», что и в биологических системах — 20 ами-нокислот, из которых синтезируются все природные белки. При этом сохраняется главный “строительный принцип” живого: соединение этих аминокислот в белковую молекулу. Эти белковые молекулы замечательны тем, что после своего образования они сами сво-рачиваются в заданную трехмерную структуру и приобретают биологическую активность, то есть становятся готовыми биоинструментами и биомашинами, способными выполнить заданные функции.

Объединить молекулы в единую конструкцию помогут ферменты катализаторы всех клеточных реакций. Ферменты могут выборочно присоединять к себе определенные молекулы и тем самым модифицировать их, заставлять реагировать друг с другом, меняя их свойства. Многие ученые считают, что мы живем в то время, когда биотехнологическая реальность превзошла давние мечты фантастов о конструировании новых живых существ. Трансгенные растения и животные (с измененным генотипом) вовсю используются пищевой про-мышленностью. Однако тут нет полного единства мнений, часть ученых считает, что трансгены более подвержены мутациям, чем традиционные виды, и мутации эти, увы, малопредсказуемы. Это означает, что контроль за живыми существами, изменившими свой геном, не может быть полным. Они в любой момент могут измениться, чего не скажешь об обычных существах. Отдельную белковую наномашину пока никак не удается спроектировать. Невозможно даже предсказать — в какую сторону свернется вновь синтезированная белковая молекула, а тем более — на что окажется способной эта структура.

Как видим, есть много причин, сковывающих энтузиазм ученых в отношении “живых” машин. В то же время без биологических структур очень трудно начать манипулировать отдельными атомами и молекулами. С успехом разрешит эти противоречия, по мысли Дрекслера, второе поколение наномашин.

Основным типом машин второго поколения будут так называемые ассемблеры, то есть сбор-щики. Из любых нужных атомов и молекул они должны уметь строить микросистемы любого назначения — двигатели, вычислительные устройства, поточные линии и средства связи. Это будет наномолекулярный робот со сменными программами на перфолентах по типу ДНК и РНК, но в отличие от них легко заменяемыми и изменяемыми. Процесс смены программы в этих микроустройствах, по мысли ученого, напоминает заражение клетки вирусом, под действием которого она синтезирует чуждые ей белки.

В середине восьмидесятых швейцарские ученые Г. Роррер и Г. Биннинг создали сканирующий туннельный микроскоп. Он дал возможность разглядеть элементы размерами около десятых долей нанометра. А это размеры атома. А уже в девяностые годы заместитель директора Института нанотехнологии Петр Лускиневич рассказывал о настоящих чудесах: — Военные ученые из академии технологических наук изобрели вот такой прибор, отдаленно напоминающий школьный микроскоп, соединенный с компьютером, с его помощью вы можете создать все что угодно. Что, к примеру, вам бы хотелось иметь? Корреспондент, бравший интервью, сразу предложил автомобиль, на что ученый ответил:- А почему бы и нет. Ведь любое вещество состоит из атомов, а этот прибор позволяет группировать атомы в любом порядке. Создатели этого прибора настроены оп-тимистично. Ведь управляя соединением атомов в молекулы, можно создавать любые «старые”, а также и новые формы материи. Похоже на то, что искусственная сущность сама может найти себе материальное воплощение.

В последнее время разрабатываются искусственные полимерные гели, способные изменять свои свойства, — поэтому их называют умными. Особый интерес проявляют к ним в Японии, где на их основе уже создана “почти человеческая рука” с четырьмя пальцами, которая способна схватить искусственную рыбку, плавающую в аквариуме, виляющую хвостом и плавниками под действием переменного электрического поля.

Однако поистине революционный переворот произойдет после того, как будет создан первый копировщик. Работая с умеренной скоростью — миллион атомов в секунду, копировщик соберет собственную копию за тысячу секунд. Можно заставить эти машины прямо из самих себя сложить… ну, допустим, мост через Берингов пролив. Дрекслер подробно описывает, как с помощью копировщиков построить разные разности — от ракетного двигателя до человека. Надо ли говорить, что это будет идеальный и поистине новый человек! Но следуя за полетом футурологической мысли, мы совсем забыли, что главное в человеке — это его Душа, которую не в силах создать армия из миллионов копировщиков. Нам впору, как гоголевскому Манилову, воскликнуть: “Ну позвольте, они же мертвые!” У Гоголя это восклицание относилось к мертвым душам, в нашем же случае оно будет относиться к атомам, молекулам и клеткам человека из бака.

Таким образом, может оказаться, что рецепт будущего “технократического» счастья, предложенный Дрекслером и другими отечественными и зарубежными учеными, приведет к весьма противоречивым результатам.

Применение нанотехнологий

Трудно представить себе будущее без нанотехнологий. Управление материей на уровне атомов и молекул открыло путь к большинству самых неимоверных открытий в химии, биологии и медицине. Но возможности нанотехнологий намного шире и до конца еще не изучены.

Если бы не изобретение растрового туннельного микроскопа (STM), то сфера нанотехнологий осталась бы простой фантазией ученых. При помощи микроскопа ученые смогли изучать структуры материи способом, который не был бы возможным при использовании обычных оптических микроскопов, которые не могли обеспечить атомарную точность.

Удивительные возможности растрового микроскопа были продемонстрированы исследователями компании IBM, когда создали “A Boy and His Atom” («Мальчик и его атом»), самый маленький в мире мультипликационный фильм. Его создали, двигая отдельные атомы материи по медной поверхности. На протяжении 90 секунд мальчик из молекул окиси углерода мог играть с мячом, танцевать и подпрыгивать на батуте. Весь сюжет фильма, состоящего из 202 кадров, происходил на площади размером в 1/1000 толщины человеческого волоса. Атомы ученые двигали при помощи электрически заряженного и очень острого стилуса, на кончике которого находился один атом в качестве наконечника. Подобный стилус не только способен отделить молекулу, но и передвинуть ее в нужное место и положение.

За последнее десятилетие расходы на добычу нефти во всем мире выросли, но эффективность при этом не возросла. Дело в том, что когда добыча нефти консервируется нефтяной компанией в определенном месте, в недрах земли остается еще чуть меньше половины добытой ранее нефти. Но к этим залежам трудно и дорого добраться. К счастью, ученые из Китая придумали способ, как решить эту проблему путем улучшения уже существующего метода бурения. Оригинальность методики заключается в том, что в поры нефтеносной породы закачивается вода, которая под давлением выталкивает нефть наружу. Но в этой методике есть свои трудности, так как после вытеснения нефти наружу начнет выходить и закаченная ранее вода. И вот, чтобы не допустить такого эффекта, китайские ученые Пэн и Мин Юань Ли предложили идею смешения воды с наночастицами, которые смогут закрыть поры в горной породе, давая возможность воде выбирать более узкие проходы, чтобы выталкивать нефть.

Изображение на экране компьютера передается пикселями – крошечными точками. Из-за количества таких точек, а не от их размера или формы, зависит качество изображения. Если увеличить количество пикселей на традиционных мониторах, то автоматически необходимо увеличивать и размер самого экрана, Ведущие производители как раз заняты тем, что продают экраны больших размеров потребителю.

Понимая перспективы использования нанопикселей, исследователи из Оксфордского университета придумали способ, как создать пиксели в несколько сотен нанометров в диаметре. Во время эксперимента, когда ученые зажали между прозрачными электродами несколько слоев, 300 на 300 нанометров каждый, материала GST в качестве пикселя, то получили изображение высокого качества и высокой контрастности. Нанопиксели благодаря своим крошечным размерам будут намного практичнее традиционных и могут стать основой развития оптических технологий, например, умные очки, искусственная сетчатка и складной экран. Кроме этого, нанотехнологии не энергозатратны, так как способны обновлять только часть экрана для передачи изображения, на что требуется меньше энергии.

Экспериментируя с наночастицами золота, ученые Калифорнийского университета заметили, что при растягивании или сжимании удивительным образом меняется цвет золотой нити от ярко-синего до фиолетового и красного. Им в голову пришла идея создать специальные датчики из наночастиц золота для индикации определенных процессов, которые тем или иным способом будут воздействовать на частицы. Например, если установить подобный датчик на мебели, то можно будет определить, сидит человек или спит.

Чтобы создать такие датчики ученые добавляли наночастицы золота к пластичной пленке. В тот момент, когда на пленку воздействовали, она растягивалась, и наночастицы золота меняли цвет. При легком нажатии датчик становился фиолетовым, а при сильном – красным. Частицы серебра, например, тоже способны менять цвет, но на желтый. Такие датчики, несмотря на использование драгоценных металлов, не будут дорогими, так как их размер ничтожно мал.

Какой бы модели или марки не был телефон или смартфон, iPhone или Samsung, у каждого из них есть существенный недостаток – ресурс аккумулятора и время его зарядки. Израильским ученым удалось создать аккумулятор, зарядка которого длится 30 секунд благодаря открытию в области медицины. Дело в том, что при изучении болезни Альцгеймера в Университете Тель-Авива ученые обнаружили способность молекул пептидов, которые вызывают болезнь, аккумулировать электрический заряд. Компания StoreDot, заинтересовалась этим открытием, так как давно работает в сфере практических применений нанотехнологий, и ее исследователи разработали технологию NanoDots для эффективной и более длительной работы батарейки смартфонов. Во время демонстрации на выставке достижений ThinkNext, организованной компанией Microsoft, аккумулятор телефона Samsung Galaxy S3 был заряжен меньше чем за минуту от 0 до 100%.

Некоторые медицинские компании, понимая угрозу распространения таких заболеваний, как рак, лечение которых часто становится неэффективным и несвоевременным, занялись исследованиями дешевых и эффективных способов борьбы с ними. Одна из таких компаний, Immusoft, заинтересовалась разработкой способов доставки лекарств в организм. Их революционный подход основан на том принципе, что человеческий организм при помощи иммунной системы сам способен вырабатывать нужное лекарство, тем самым будут экономиться миллиарды долларов на производство лекарств фармацевтическими компаниями и терапию. Иммунная система человека будет «перепрограммирована» на уровне генетической информации с помощью специальной капсулы наноразмера, в результате клетки начнут вырабатывать собственное лекарство. Метод пока представлен только в виде теоретических разработок, хотя эксперименты над мышами были успешными. В случае эффективности метод ускорит выздоровление и уменьшит затраты на лечение серьезных заболеваний.

Электромагнитные волны, основа современных коммуникационных технологий, не являются надежным средством, так как любой электромагнитный импульс, может не только нарушить работу спутника связи, но и вывести его из строя. Неожиданное решение данной проблемы было предложено учеными Университета в Уорвике, Англия, и Университета в Йорке, Канада. Решение было подсказано ученым самой природой, а именно тем, как животные общаются на расстоянии при помощи запаха, которым они кодируют послание. Ученые тоже попробовали закодировать молекулы испаряющегося спирта, применив революционную коммуникационную технологию, и отправили сообщение, которое содержала следующее: «О, Канада».

Для кодирования, передачи и приема подобного сообщения необходимо наличие передатчика и приемника. На передатчике набирается текстовое сообщение с помощью Arduino One (микроконтроллера для кодировки), который преобразует текст через двоичный код. Это послание распознается электронным распылителем со спиртом, который «1» он заменяет на один впрыск, а «0» - как пробел. Затем приемник с химическим сенсором улавливает спирт в воздухе и декодирует его в текст. Сообщение преодолело путь в несколько метров на открытом пространстве. Если технологию усовершенствовать, то человек будет способен передавать сообщения в труднодоступные места, например, туннели или трубопроводы, где электромагнитные волны бесполезны.

Компьютерные технологии за последнее десятилетие сделали огромный скачок в развитии относительно мощности и емкости хранения информации. В свое время, 50 лет назад, такой скачок предсказывал Джеймс Мур. Его именем даже был назван соответствующий закон. Но современные физики, а именно Мичио Каку, заявляют, что закон прекратит свою работу, так как мощь и емкость вычислительной техники не соответствует существующим производственным технологиям.

Ученые сейчас вынуждены искать альтернативные решения данной проблемы. Например, исследователи из Университета RMIT в Мельбурне во главе с Шаратой Шрирамой уже на пути создания таких устройств, которые будут имитировать работу человеческого мозга, а именно отдела хранения информации. В роли «мозга» выступает нанопленка, химически запрограммированная на хранение электрических зарядов по принципу «включен», «выключен». Пленка в 10000 раз тоньше человеческого волоса станет ключевым фактором в развитии революционных устройств хранения информации.

Перспективы, связанные с применением нанотехнологий в науке, уже давно восхищают общество, но возможности настолько велики, что не могут ограничиваться такими сферами, как медицина, биология и техника. Применение нанотехнологий в искусстве приведет к появлению наноискусства – создание крошечного мира под микроскопом, который люди будут воспринимать совершенно по-другому. Наноискусство предполагает связь между наукой и искусством. Ярким примером такой связи является портрет президента США под названием «Нанобама», созданный инженером-механиком из Мичиганского университета. Портрет выполнен из 150 нанотрубок, а размер его лица составляют менее 0,5 миллиметра.

Человек усердно работал над созданием чего-то большего по размеру, самого быстрого по скорости и самого сильного по силе и мощности. Когда же нужно создать нечто совсем маленькое, то без нанотехнологий здесь не обойтись. Например, благодаря нанотехнологиям была напечатана самая маленькая книга в мире, Teeny Ted From Turnip. Ее размеры составляют 70х100 микрометров. Сама книга состоит из 30 страниц, на которых размещены буквы из кристаллического кремния. Стоимость книги оценивают в 15 000 долларов, а чтобы ее прочитать понадобится не менее дорогой микроскоп.

Новые нанотехнологии

Опережающее развитие нанотехнологий в мире связано с такими областями ее применения как микроэлектроника,специальные материалы, энергетика и военная техника.

Прогресс в микроэлектронике идет очень быстро, и с каждым годом количество транзисторов в микросхемах растет, а техпроцесс их изготовления становится все тоньше. Роль кремния, которую он длительное время играл в качестве основного сырья для получения полупроводников, приближается к своему логическому завершению. Это связано с тем, что толщина слоя кремния не может быть менее 2 нм, и дальнейшая миниатюризация приведет к химической реакции, вызывающей нарушение электрических свойств. Один из новых материалов для замены кремния является сульфид молибдена.

Специалисты из Лаборатории наноструктур и наноэлектроники Политехнического университета Яуизиамы создали прототип микросхемы из молибденита, которая продемонстрировала его существенное превосходство над кремнием. Молибденитовые транзисторы показали отличную стабильность работы при толщине слоя материала всего в три атома. Такая толщина дает трехкратное итоговое уменьшение полупроводника в размерах, в сравнении с кремниевым аналогом. Кроме того, процессоры из молибденита потребляют меньше электричества, и, в силу особенностей его структуры, является пластичным. Такие полупроводники не уступают графеновым, а их усиливающие свойства позволят создавать электронику с очень сложной структурой. Остается ждать.

Норвежская компания ThinfilmElectronics и исследовательский центр Xerox в Пало-Альто (PARC) продемонстрировали рабочий прототип первой в мире печатной энергозависимой памяти, схема адресации которой содержит комплементарные органические цепи. Исследователи смогли объединить технологию ферроэлектрической полимерной памяти Thinfilm, предусматривающую формирование ячеек методом печати, и транзисторную технологию PARC, основанную на применении комплементарных пар транзисторов n-типа и р-типа для формирования цепей и получили «органический эквивалент» КМОП - микросхем. Представленные образцы памяти ThinfilmAddressableMemory не могут обеспечить высокое быстродействие и емкость, их достоинства в другом: они обладают гибкостью и низкой себестоимостью производства. Ученые считают, что разработанная методика приближает эру «Интернета вещей» (Internet-of-Things), где каждый предмет имеет собственный IP-адрес и подключен к Сети через «умные метки» (StartTag).

Исследователи из Калифорнии, руководимые Хосмосом Галацисом (Hosmas Galatsis)разработали метод изготовления печатных транзисторов из углеродных нанотрубок и использовали эти транзисторы для включения и выключения органических светоизлучающих диодов [organiclightemittingdiode (OLED)]. В соответствии с результатами исследований печатные транзисторы из углеродных нанотрубок должны стать дешевле своих кремниевых аналогов, представляя при этом более эффективную управляющую систему для дисплеев на основе светоизлучающих диодов.

Для получения этих транзисторов исследователи первоначально напечатали на подложке из оксида кремния электроды стока, истока и затвора из серебра. Затем размести между электродами 98-% суспензию одностенных углеродных нанотрубок. После полного испарения растворителя нананотрубки был нанесен второй слой серебра, таким образом, был получен обратносмещенный полевой транзистор. При значительной локализации положительного заряда на управляющем электроде (электроде затвора) его электрическое поле заставляет электроны нанотрубок покидать энергетическую зону проводимости, ток между электродами стока и истока прекращается, что выключает связанный с транзистором органический светоизлучающий диод. Однако если на управляющем электроде накапливается отрицательный заряд, электроны возвращаются в зону проводимости и ток, протекающий между электродами стока и истока, включает органический светоизлучающий диод. Нанесение на внешнюю сторону углеродных нанотрубок полиэтилениминового слоя, содержащего LiClO4 позволяет организовать работу полевого транзистора с переходом верхнего затвора. Галацис отмечает, что проникновение полимера внутрь нанотрубок позволяет обеспечить более эффективный контроль тока, протекающего через транзистор и управляемые им элементы схемы.

Эско Кауппинен (EskoKauppinen) из Университета Аалто (Финляндия) отмечает, что продемонстрированная возможность организации транзистора с переходом верхнего затвора из углеродных нанотрубок лишает новую систему наиболее значительного преимущества - высокой подвижности электронов, необходимой для обеспечения протекания высокой силы тока – подвижность электронов в обратносмещенных полевых транзисторах в 40 раз выше, чем в транзисторах в переходом внешнего затвора.

Команда ученых из Технического университета Мюнхена (TechnischeUniversitaetMuenchen) объявила о создании того, что в недалеком будущем станет основой электронных устройств, способных общаться напрямую с человеческим мозгом. Ученые создали матрицу из транзисторов на основе графена, которые совместимы с живыми тканями, могут производить съем и запись электрический сигналов, вырабатываемых процессами, протекающими в клетках живых организмов. Графеновые пленки легко наносить на гибкие основания и его можно производить достаточно дешево в промышленных масштабах. Исследователи из Мюнхена начали с того, что изготовили матрицу из 16 графеновых полевых транзисторов (graphemesolution-gatedfield-effecttransistor, G-SGAET). Графеновая пленка была осаждена из паровой фазы на поверхность медной фольги, затем, используя обычный метод фотолитографии и травления, были получены все элементы электрической схемы. После этого поверх созданной транзисторной матрицы ученые вырастили слой живых клеток, клеток тканей, подобной ткани сердечной мышцы. Изменения в химической и электрической составляющей окружающей среды в районе затворов полевых транзисторов были преобразованы в изменения электрического тока, протекающего через транзистор.

Исследователи обнаружили, что эти сигналы биологического происхождения весьма легко отделить от шумов и помех. Дальнейшие исследования ученых направлены на уменьшение уровня собственных шумов, создаваемых графеновыми транзисторами. Это позволит еще более точно выделять сигналы биологического происхождения и использовать их в других целях. Так же идет доработка технологии изготовления графеновых транзисторов для того, что бы матрицы из них можно было создавать на подложках из гибких полимерных материалов, используемых для изготовления имплантов. Немецкие ученые работают совместно с учеными из парижского Института зрения (VisionInstitute), определяя, совместимы ли графеновые транзисторы с тканями сетчатки глаза и нейронами глазных нервов.

Исследователи из университета Питсбурга разработали новый тип электронного переключателя - молекулу, способную выполнять функции логического устройства. Использование таких молекулярных логических элементов электронных схем может привести к созданию меньших по размеру, более эффективных и быстродействующих электронных схем. Руководитель исследования, Хрвойе Петек (Hrvoje Petek) отмечает, что новый переключатель превосходит по показателям существующие в настоящее время молекулярные логические устройства, а принципы, установленные в процессе его изучения, позволяют определить, какими правилами нужно руководствоваться, чтобы создать навое поколение более эффективно работающих молекулярно электронных устройств. Молекулярный переключатель был обнаружен в ходе экспериментов с вращением треугольного триметаллического кластера, атомы металла в нем связаны с атомом азота, инкапсулированного в клетку фуллерена.

Петек с соавторами обнаружил, что металлосодержащие кластеры, инкапсулированные в полую клетку из атомов углерода, могут вращаться, принимая одно из нескольких возможных положений, в результате стимуляции электронами. Такое вращение меняет способность системы проводить электрический ток, что позволяет переключаться между несколькими логическими состояниями, форма фуллереновой капсулы при этом сохраняется. Петек отмечает, что помимо прочих преимуществ новая концепция отличается от существующих в выгодную сторону еще и тем, что клетка фуллерена защищает металлический кластер от внешнего воздействия, и он не будет разрушен внешней агрессивной средой. Благодаря форме, приближающейся к сферической, прототипы молекулярных переключателей могут быть интегрированы в наноразмерные молекулярные электронные системы для создания параллельно работающих вычислительных структур. Работа устройства была продемонстрировано на примере молекулы Sc3NaC80 , вложенной между двумя субстратами, один из которых представляет собой идеально плоский субстрат из оксида меди, а другой – острый щуп из вольфрама. Приложение напряжения приводить к тому, что равносторонний треугольный кластер Sc3N может вращаться, принимая шесть предсказанных логических приложений.

Графен можно использовать для идентификации следов взрывчатых веществ в воздухе, показало исследование китайских и американских ученых. Детектор на основе графеновой пены «чувствует» миллионные процентные доли газов, которые являются «отпечатками пальцев» взрывчатки. Новое исследование ученых из Политехнического института Ренсселира показало, что графитовая пена может послужить газовым детектором, распознающим потенциально опасные и взрывчатые вещества, причем получать ее можно в промышленных количествах. Открытие указывает путь к новому поколению газовых датчиков, которые смогут использовать снайперы, службы общественной безопасности, войска, а также заводы в производственных целях.

Новый сенсор дает правильные воспроизводимые результаты по измерению аммиака и диоксида азота в количествах около 20 миллионных долей. Детектор представляет собой графеновые нанослои, наложенные друг на друга. Они формируют структуру, подобную пене. Размер гибкого детектора примерно с почтовую марку, толщина как у фетровой ткани, он гибкий и прочный.

«Мы очень довольны полученными результатами и надеемся, что эта работа станет первым шагом к созданию коммерчески доступных газовых сенсоров. По нашим данным они горазда более чувствительны в аммиаку и диоксиду азота, чем коммерчески доступные детекторы сегодня», - заявил профессор Нихил Кораткар, руководивший исследованием вместе с профессором Чен Хуамином из Китайской академии наук.

ChenP, FuY, AminiradR, WangC, ZhangJ, EangK, GalatsisK, ZhouC, коллектив исследователей из Университета Калифорнии (Лос Анжелес), вместе со своим дочерним стартапом, который предложил использовать ОУНТ для создания канала проводимости в обратносмещенном полевом транзисторе. Полученный транзистор полностью справился с возложенными на него обязанностями по управлению светодиодом, о чем свидетельствуют вольтамперная характеристика, на которой различимы область отсечки, и триодная область при различных напряжениях на затворе. Для реализации более сложной схемы (2Т1С) необходимо обратносмещенные полевой транзистор превратить в транзистор с верхним затвором, например, путем нанесения дополнительного слоя полиэтиленимина/перхлората лития. Авторы впервые нанесли слой изолирующего полимера на канал проводимости, покрыв его лишь частично. Это привело к появлению трех областей с различным типом проводимости, что при определенном напряжении делает возможным межзонное туннелирование (полное покрытие канала проводимости приводит лишь к n–типу проводимости).

Немецкая военная компания Rheinmetall, которая продемонстрировала новую лазерную систему, устанавливаемую на транспортных средствах, которая способна поразить практически любую цель, начиная от летающих беспилотников и заканчивая взрывными устройствами, установленными на дорогах. Мощность нового лазерного орудия относительно невелика – всего 10КВт импульсной мощности. Но за счет применения некоторых инновационных решений, новый лазер, установленный на подвижной турели боевого транспортного средства буквально «стер» с неба небольшой беспилотник и продемонстрировал способность поражать прямо в воздухе летящие минометные снаряды, защищая от них пехоту. Маленький лазер, мощностью в 1 КВт, установленный рядом с мощным лазером, используется для подрыва взрывных устройств и поражения слабо защищенных целей, таких как моторные лодки. В ближайшее время специалисты компании Rheinmetall собираются довести мощность лазера до значения 100 КВт, что позволит с его помощью поражать цели уже совсем другого класса.

Институт робототехники и мехатроники германского аэрокосмического центра при участии ряда компаний, в том числе концерна EADS-Astrium, построил беспилотный самолет на солнечных батареях. Длина беспилотника равна 10 метрам, собственный вес 100 килограмм. Самолет способен поднимать 5 кг полезной нагрузки. Его винты вращает пара электромоторов мощностью 2 КВт каждый.

Аппарат, названный ELHASPA (Electric High Altitude Solar Powered Aircraft), является испытательной площадкой для тестирования технологий, предназначенных для «бесконечно» высокого полета. На этом самолете европейские инженеры проверяют авионику, системы навигации, двигатели и аэродинамику. Полученные сведения могут создать более продвинутый аппарат, который сможет месяцами оставаться на высотах более 15 километров.

Компания General Electric успешно завершила испытания более быстрого и дешевого способа производства ядерного топлива. Новая технология будет коммерциализована и впервые использована на соответствующем ядерном производстве в г.Уилмингтон, штат Северная Каролина. Эта технология является прорывом и позволит существенно снизить стоимость топлива для АЭС. Технология обогащения урана разделением изотопов с помощью лазерного возбуждения (Silex) была разработана Австралийской компанией Silex еще в 1992 году. В 2006 году компания General Electric получила права на ее коммерциализацию и лицензирование и возглавила дальнейшие разработки. Технология работает на принципе лазерной фотоинициации атомов урана-325. Урановое сырье проходит лазерный луч, настроенный на особую частоту, которая создает электрический заряд у атомов урана-235. Это позволяет поймать их электромагнитной ловушкой и сохранить на металлической пластине. Если руководство General Electric запустит завод на базе технологии Silex, впервые в истории атомной энергетики начнется полномасштабное лазерное обогащение гексафторида урана (UFG). Американцы испытали прототип крохотного устройства, которое генерирует электроэнергию напрямую из бензина, минуя реформинг топлива и промежуточные стадии преобразования его химической энергии. Эрик Ваксман (Eric Wachsman) и его коллеги из центра энергетических исследований университета Мэриленда (UMERC) сумели изменить конструкцию так, чтобы она оказалась больше приспособлена к установке на автомобиль. Речь идет о твердооксидных типливных элементах (SOFC). Этот тип электрихимических генераторов способен переваривать широкий спектр углеводородного горючего без необходимости в извлечении водорода. Однако существующие SOFC довольно громоздки и потому применяются в основном в стационарном амплуа, например, как резервные генераторы в зданиях (вспомним впечатляющий « цветочный ящик»). Кроме того, SOFC работает при очень высоких температурах (порядка 800-900оС), а это вызывает сложности с теплоизоляцией, особенно важной в случае работы на борту автомобиля. Ваксман со товарищи путем подбора керамического электролита и оптимизации дизайна ячейки сумели снизить ее рабочую температуру до 650оС. Авторы исследования сократили толщину керамического слоя с сохранением прочности всей конструкции. Более того, по информации Technology Review ученые намерены развить этот проект, снизив нагрев элемента до очень низких температур (для данного класса устройств) – 350оС. Это уже позволить без проблем устанавливать подобный генератор в автомобиле. Такие топливные элементы, потребляющие бензин, могли бы понемногу пополнять запас энергии в аккумуляторах, от которых питается электромотор. Батареи взяли бы на себя начальный разгон автомобиля и вообще все всплески в потреблении энергии, а SOFC работали бы спокойно и равномерно, увеличивая пробег на одной зарядке аккумуляторов.

Разработан новый метод создания материалов с нанопорами. Его отличает простота и возможность промышленного применения. Этот метод получил название «коллективный осмотический удар» (« collective osmotic shock» – COS).Ученые из Кембриджа показали, как с помощью осмотических сил можно получить нанопоры, даже если удаляемый компонент полностью инкапсулирован в толще материала.

Ведущий автор проекта, Исан Сивания (Easan Sivaniah), объясняет суть процесса COS «Эксперимент напоминает школьный опыт с воздушным шариком, наполненным соленой водой. Если его поместить в пресную воду, соль не сможет покинуть шарик, а вот пресная вода вполне способна попасть внутрь, что она и делает, чтобы уменьшить концентрацию соли внутри. Чем больше воды поступает внутрь, тем сильнее раздувается шарик, и в конечном итоге он лопается». «В нашей работе мы, по сути, показали, как это работает для материалов с инородными включениями, которые вызывают серию осмотических «взрывов». Оставленные осмотическими ударами полости соединяются друг с другом и с поверхностью материала, позволяя веществу-примеси выйти наружу и создавая сквозные поры».

Исследователи продемонстрировали высокую эффективность полученного таким методом фильтра при удалении из воды частиц красителей (малахитового зеленого и метилового оранжевого). В качестве основного вещества выступал полистирол, вторичного – оргстекло, а растворителя – уксусная кислота. Полученный в результате процесса COS материал состоял из множества слоев полистирола толщиной около 65 нм, соединенных «лесом» полимерных фрагментов. Поверхность материала была усеяна порами, размеры которых, по оценкам ученых, составили 1-2 нм.

Другое возможное применение разработанной технологии – создание многослойных материалов с необычными оптическими свойствами – было рассмотрено совместно со специалистами по фотонике и оптоэлектроники из университета Севильи и Кавендишской лаборатории. Подобные материалы могут быть использованы при создании датчиков, меняющих цвет при поглощении следовых (чрезвычайно малых) количеств химических веществ. Авторы считают, что полученные по технологии COS материалы также могут найти применение при изготовлении светоизлучающих устройств, топливных элементов, солнечных батарей и электродов для суперконденсаторов.

На будущее такой быстроразвивающейся отрасли, как цементная, можно смотреть с уверенностью: мировое научное сообщество уже сейчас на пути к технологическому прорыву, созданию продукта с качественно новыми характеристиками, так называемого «зеленного» цемента. Общая цель – сокращение выбросов СО2 на 30 процентов при одновременном улучшении качества, повышении прочности и долговечности продукта. «Структура цементного состава и его пористость могут быть изменены, например, при добавлении слоистых непуццолановых силикатов, частицы которых обладают специфической формой и свойствами. Если нанотехнологии пробьют себе дорогу в жизнь, то можно будет выпускать экологически дружелюбные цементы и бетоны, обладающие практически неограниченными и разнообразными характеристиками. Возможно, не за горами эра гибкого и прочного бетона, не требующего использования арматуры при строительстве» - считает генеральный директор международного концерна Holcim (Швейцария) Хория Андреан.

Уникальная технология, созданная специалистами компании HyperSolar, позволит производить природный газ из солнечной энергии и воздуха. Этот процесс основывается на передовых нанотехнологиях, с его помощью можно ликвидировать неблагоприятные последствия добычи природного газа без внесения существенных изменений в сегодняшнюю инфраструктуру его доставки и использования – коренным образом изменяется только сама добыча газа. При которой не задействуются подземные источники, а используются экологичные наземные генерирующие станции и «бесплатное» сырье. Новая технология основана на генерации природного газа из простой воды и углекислого газа с использованием солнечного света. Вдохновением к созданию такого метода исследователям послужил естественный фотосинтез в растениях. Именно процесс фотосинтеза имитирует запатентованная технологи HyperSolar, выделяя с помощью солнечной энергии из воды. После этого свободный водород вступает в реакцию с углекислым газом, образуя в конечном итоге метан – а это уже основной компонент природного газа.

Авторы метода уверены, что этот бесконечный и очень дешевый природный газ сможет стать достойной альтернативой традиционному. Кроме того, из нового процесса убирается добыча, очистка и переработка ископаемого газа, что также увеличивает перспективы этого метода, не говоря уже о проблеме загрязнения окружающей среды углекислым газам, выделяемой традиционной технологией. Ученые HyperSolar также продумали момент, связанный с дефицитом воды в наиболее солнечных регионах земли: новая технология способна использовать в качестве сырья даже сточные воды с большим содержанием органических молекул всех видов. Все токсины будут выводиться путем фотоокисления, одновременно с производством молекулярного водорода и чистой воды.

Немецкие физики использовали обычную свечную сажу для создания лакокрасочного покрытия, которое одинаково эффективно отталкивает воду и маслянистые жидкости. Группа ученых под руководством Дориса Фолльмера (DorisVollmer) из института изучения полимеров Общества Макса Планка в городе Майнц (Германия) обратила свое внимание на свечную сажу. Физики заметили, что пленка сажи, которую пламя свечи оставляет на поверхности стекла при достаточно долгом соприкосновении, обладает хорошими водо- и маслоотталкивающими свойствами. Они проанализировали ее химическую и пространственную структуру при помощи сканирующего электронного микроскопа и обнаружили, что пленка состоит из наночастиц углерода диаметром 30-40 нанометров. Эти фрагменты расположены в виде запутанного леса из углеродных хвостов, которые на языке науки называются «сетью фракталоподобных частиц».

Несмотря на великолепные водоотталкивающие свойства, пленка из сажи несовершенна – она легко распадается на части из-за отсутствия прочных связей между углеродными комочками. Фолльмер и его коллеги преодолели эту проблему – они скрепили слой сажи при помощи тонкой кремниевой оболочки. Они поместили пленки сажи в эксикатор – сушильную машину – вместе с емкостями с раствором аммиака и тетраэтил-ортосиликата (ТЭОС) – соединения кремния, кислорода и хвостов этилена. Пары ТЭОС осадались на пленку и распались на составляющие под воздействием аммиака, в результате чего на поверхности сажи остались только атомы кремния. Ученые прогревали полученный материал при температуре 600оС в течение двух часов до того момента, как угольно черная сажа стала полностью прозрачной. Затем ученые повтори процесс, заменив емкость с ТЭОС сосудом с соединением кремния, фтора и водорода. Физики проверили свойства нового материала. Кроме того данный материал обладает неплохими механическими свойствами – суперлак сохраняет свои свойства даже при температуре в 400оС. Пластинка толщиной в 3 микрометра поглощает меньше света, чес стекло, что делает этот материал пригодным для покрытия очков и других оптических устройств. После этого ученые попытались исцарапать свое изобретение при помощи песка – поверхность суперлака покрылась крупными царапинами, но не потеряла своих свойств.

Приведенные выше данные показывают широкое применение новых нанотехнологий в различных отраслях техники.

Использование нанотехнологий

В современном мире применение нанотехнологий присутствует во всех областях жизнедеятельности человека, и представить технический прогресс без внедрения в практику высоких технологий невозможно, фактически это рычаг, для получения политического, финансового и военного превосходства страны.

Прежде чем говорить о применении нанотехнологий разберемся, что обозначает этот термин. Строго говоря, определение нанотехнологии включает несколько критериев:

• Проведение исследований и разработка технологий на макромолекулярном, молекулярном и атомном уровне с величиной частиц от 1 до 100 нанометров (нм).
• Изобретение и применение структур, устройств и систем, обладающих новыми свойствами и функциями за счет их малых размеров.
• Контроль созданных объектов и возможность управлять ими на уровне отдельно взятого атома.

Самые масштабные нано разработки, в первую очередь, связаны с использованием инновационных технологий в промышленности.

Ставка сделана на специальные нанодобавки, содержащие микрочастицы, которые позволят улучшить или изменить свойства традиционных материалов:

• Повышение износоустойчивости;
• Защита от коррозии;
• Жароустойчивость;
• Повышение твердости;
• Повышение прочности;
• Уменьшение массы конструкций;
• Жидкие и твердые смазки для уменьшения трения.

Применение нанотехнологий в машиностроении может быть использовано для производства:

• Режущего инструмента из сверхтвердого материала;
• Станков для изготовления деталей, сконструированных из наноматериалов;
• Сверхвысокопрочных пружин;
• Синтеза многофункциональных нанокерамических покрытий.

Говорить о применении нанотехнологий в промышленности можно много, особенно если заглянуть в микромир и попытаться представить что происходит и как работают наночастицы.

Одной из важнейших задач в электронике является замена материалов элементарной базы (возможности материалов исчерпываются) электроники на наноматериалы, то есть использование материалов с внедренными в их молекулярную структуру наночастицами.

Это позволит намного расширить возможности электронной техники, улучшить ее качество при неизменных, либо меньших размерах:

• Увеличение объема хранения энергии. Можно использовать длительное время без подзарядки телефоны, андроиды, планшетники, компьютеры.
• Увеличение объема хранимой информации на электронных устройствах.
• Уменьшение размеров транзисторов за счет увеличения проводимости материалов, из которых они изготовлены.

В скором будущем в электронике ожидается создание сверхбыстродействующих компьютеров и даже нейрокомпьютеров с рекордной производительностью.

Нанотехнологии в сельском хозяйстве имеют большие перспективы: используя наноингибиторы (наномедь, наносеребро):

• в молочной продукции можно регулировать процессы брожения и скисания молока,
• применять при дезинфекции сельскохозяйственных помещений и инструментов,
• при упаковке и хранении продуктов (яблок, груш…).

В животноводстве и птицеводстве нанотехнологии используют при добавлении в корм нанодобавок, которые стимулируют рост животных, повышают их стрессо и иммуноустойчивость к заболеваниям. Наночастицы железа и других микроэлементов повышают продуктивность скота.

Сельское хозяйство интенсивно развивается в сфере генной инженерии.

Ученые и селекционеры используют ДНК-технологии, которые позволяют найти гены, связанные с важными хозяйственными признаками:

• Устойчивость к инфекционным болезням;
• Сопротивляемость стрессам;
• Носительство генов, ответственных за генетические аномалии (в частности уродства, наследственные заболевания).

По сути, вся молекулярная биология есть нанобиотехнология. Основное назначение нанобиотехнологии – создание устройств с использованием биологических макромолекул, которые будут управлять биологическими системами и процессами. Важнейшее качество биологических молекул – способность к самосборке в наноструктуры, например, липиды (жиры) способны самостоятельно объединятся и формировать жидкие кристаллы.

Суперсовременное направление в растениеводстве – создание нетоксичного наногербицида, который защитит культурные растения от насекомых-вредителей и сорняков.

Приведенные примеры позволяют предположить, что применение нанотехнологий, как в ближайшем, так и отдаленном, будущем будет стремительно развиваться. К средине столетия промышленность полностью перейдет от тривиальных методов работы к использованию молекулярных роботов, которые будут конструировать устройства и материалы непосредственно из молекул и атомов.

В сельском хозяйстве бионанороботы смогут осуществлять биохимические реакции, которые происходят в организме животных и растений, но значительно быстрее. Можно предположить, что длинные пищевые цепи сведутся к трем звеньям: почва – углекислый газ – молоко.

Сфера нанотехнологий

Для начала вспомним, что же это такое – нанотехнологии. Это быстроразвивающееся, перспективное направление научных исследований и знаний основанное на работе с атомами и молекулами. Эти технологии используют их самые скрытые и наиценнейшие свойства.

Нанотехнологии можно разделить на три основные части: разработка и производство наномикросхем, нанороботов, а также инженерию на атомном уровне. Просто не возможно сразу охватить их сферу применения – она огромна. Она простирается на множество отраслей, начиная от машиностроения и заканчивая пищевой и косметической промышленность. Нанотехнологии и их разработки надёжно внедрились во все отрасли.

Кто же это такие, специалисты по нанотехнологиям? Говоря коротко – это нанотехнологи и инженеры-нанотехнологи. Если первые - это учёные, в основной своей массе физики и химики, изучающие необычные свойства атомов и молекул и их исследовательская деятельность, в общих чертах, знакома нам со школьной скамьи, то инженеры-нанотехнологи – это абсолютно новая специальность.

Они занимаются разработкой необходимого исследовательского оборудования для нанотехнологов. Так же они, на базе проведённых исследований, разрабатывают самые разнообразные наноматериалы размером от 1 до 100 нанометров. При необходимости они часто работают с так называемыми контейнерами наноматериалов, имеющие размеры от 100 до 200 нанометров. Что бы вы имели представление об этих размерах, заметим, что один нанометр равен одной миллиардной метра.

Сфера применения наноматериалов. Она безгранична. Всем понятно, что лидеры в развитии нанотехнологий, так же займут лидирующие позиции в ведущих отраслях мировой экономики. Например, наноматериалы давно применяются в медицине. Некогда сложнейшие операции, длившиеся часами, теперь с применением нанотехнологий и материалов выпущенных с их помощью, стали легки и безболезненны, а вместо безобразных шрамов на месте вскрытия, заметен едва заметный косметический шов.

Всё что нас окружает: сотовые телефоны и компьютеры, автомобили и косметика, даже продукты питания – на всём оставили свой след нанотехнологии, внедряя разработанные их специалистами материалы во все сферы деятельности человека.

Компанией NaturalNano была разработана особая краска, блокирующая сигналы сотового, если этого пожелает владелец. В строительстве, на основе нанотехнологий, созданы необычайно прочные композитные материалы и энергосберегающие плёнки.

Сложно и глупо перечислять все достижения этой новой науки. Необычные свойства этих материалов ещё до конца не осмыслены самими специалистами. Радует, что правительство нашей страны осознало её и вкладывает огромные деньги в её развитие и подготовку наноспециалистов.

Направления нанотехнологий

Согласно Энциклопедическому словарю, технологией называется совокупность методов обработки, изготовления, изменения состояния, свойств, формы сырья, материала или полуфабриката, осуществляемых в процессе производства продукции.

Особенность нанотехнологий заключается в том, что рассматриваемые процессы и совершаемые действия происходят в нанометровом диапазоне пространственных размеров. “Сырьем” являются отдельные атомы, молекулы, молекулярные системы, а не привычные в традиционной технологии микронные или макроскопические объемы материала, содержащие, по крайней мере, миллиарды атомов и молекул. В отличие от традиционной технологии, для нанотехнологии характерен “индивидуальный” подход, при котором внешнее управление достигает отдельных атомов и молекул, что позволяет создавать из них как “бездефектные” материалы с принципиально новыми физико-химическими и биологическими свойствами, так и новые классы устройств с характерными нанометровыми размерами. Понятие нанотехнология еще не устоялось. По-видимому, можно придерживаться следующего рабочего определения.

Нанотехнологией называется междисциплинарная область науки, в которой изучаются закономерности физико-химических процессов в пространственных областях нанометровых размеров с целью управления отдельными атомами, молекулами, молекулярными системами при создании новых молекул, наноструктур, наноустройств и материалов со специальными физическими, химическими и биологическими свойствами.

Анализ текущего состояния бурно развивающейся области позволяет выделить в ней ряд важнейших направлений.

Молекулярный дизайн. Препарирование имеющихся молекул и синтез новых молекул в сильно неоднородных электромагнитных полях.

Материаловедение. Создание “бездефектных” высокопрочных материалов, материалов с высокой проводимостью.

Приборостроение. Создание сканирующих туннельных микроскопов, атомно-силовых микроскопов, магнитных силовых микроскопов, многоострийных систем для молекулярного дизайна, миниатюрных сверхчувствительных датчиков, нанороботов.

Электроника. Конструирование нанометровой элементной базы для ЭВМ следующего поколения, нанопроводов, транзисторов, выпрямителей, дисплеев, акустических систем.

Оптика. Создание нанолазеров. Синтез многоострийных систем с нанолазерами.

Гетерогенный катализ. Разработка катализаторов с наноструктурами для классов реакций селективного катализа.

Медицина. Проектирование наноинструментария для уничтожения вирусов, локального “ремонта” органов, высокоточной доставки доз лекарств в определенные места живого организма.

Трибология. Определение связи наноструктуры материалов и сил трения и использование этих знаний для изготовления перспективных пар трения.

Управляемые ядерные реакции. Наноускорители частиц, нестатистические ядерные реакции.

Нанотехнологии в строительстве

В последние годы нанотехнологии стали составляющей прорыва во многих сферах жизни - от телекоммуникаций до медицины. Нашлось им применение и в строительстве. Так использование нанотехнологий позволяет строить дома, которые могут простоять 300-400 лет.

Почти пятая часть строительных компаний в развитых странах мира используют в своей работе материалы, полученные с применением нанотехнологий. Интересно проанализировать "наноарсенал" зарубежных девелоперов и возможности применения этих инноваций в российской строительной отрасли.

Использование нанотехнологий позволяет придавать обычным строительным материалам невиданные ранее свойства. Одно из направлений разработок - применение ультрадисперсных, наноразмерных частиц при создании высокопрочных долговечных бетонов. Бетон с применением наночастиц отличается сроком службы до 500 лет. Такие материалы предназначены для строительства большепролетных мостов, небоскребов, защитных оболочек атомных реакторов и др. Исследования ученых в области наномодификации металлов и сплавов позволили получить высокопрочную сталь, не имеющую аналогов по показателям прочности и вязкости. Материал подходит для возведения дорожных и гидротехнических объектов. Композитные и полимерные нанопокрытия стальных конструкций значительно повышают стойкость к коррозии и продлевают срок службы даже в агрессивных средах.

К числу современных материалов, созданных с применением нанотехнологий и применяемых в строительстве, относятся и теплоизоляционные материалы, и новые лаки, краски, эмали. Особого внимания заслуживают конструкционные композиты - материалы с полимерной, металлической или керамической матрицей. Примером композитов являются углепластики - композиты с полимерной матрицей и углеволокнами.

Немецкий ботаник Вильгельм Бартлотт обратил внимание на то, что лепестки лотоса покрыты воскообразным веществом, которое вырабатывается растением, делая его неуязвимым для воды. Китайские ученые сымитировали этот эффект при помощи нанопокрытия, которое использовали при возведении здания Большого национального театра в Пекине. Яйцеобразный купол из стекла и титана благодаря этому покрытию не смачивается осадками и не подвергается загрязнению. Фасадные водонепроницаемые краски с применением нанотехнологий будут пользоваться в ближайшие годы особым спросом в строительстве, считают эксперты.

Актуальное направление использования наноматериалов в строительстве - энергосбережение. Полупрозрачные нанопокрытия, созданные в Шанхайском центре науки и нанотехнологий, могут накапливать солнечную энергию. Пленки, нанесенные на окна и стены здания, работают как солнечные батареи, снижая расходы на электроэнергию. Интересные свойства имеют прозрачные наногели (аэрогели), открытые Сэмюэлем Кистлером. Материалы обладают высокими тепло- и звукоизоляционными характеристиками и широко применяются в энергосберегающих кровельных системах верхнего света.

Еще одна инновация - покрытие Cool-Colors для защиты цветных окон из ПВХ от инфракрасного излучения. Благодаря особым пигментам пленка отражает до 80% тепловых лучей и препятствует перегреву конструкции и помещения, продлевая срок службы рамы, снижая затраты на кондиционирование.

Одним из успешных проектов, реализованных в России, является создание нанокомпозитных труб для инженерных систем, которые не только превосходят аналоги по эксплуатационным характеристикам, но и отличаются невысокой стоимостью.

Стоит отметить и производство строительной стеклопластиковой композитной арматуры, перспективной альтернативы стальному аналогу. Материал имеет малый удельный вес (в 4-5 раз меньше, чем у стали), высокую прочность и химическую стойкость. Композитная арматура является диэлектриком, не подвержена коррозии и имеет низкую теплопроводность.

Результаты разработок в области нанотехнологий - новые виды сталей, бетонов, инновационные покрытия для светопрозрачных конструкций и самоочищающиеся покрытия - успешно применяются в современной строительной отрасли. Междисциплинарный характер нанотехнологий и динамичность развития дают основания надеяться, что Россия сможет преодолеть отставание в области применения нано.

Нанотехнологии в производстве

Наносенсоры обеспечат прогресс в ранней диагностике заболеваний. Это увеличит шансы на выздоровление. Мы сможем победить рак и другие болезни. Старые лекарства от рака уничтожали не только больные клетки, но и здоровые. С помощью нанотехнологий лекарство будет доставляться непосредственно в больную клетку.

ДНК нанотехнологии – используют специфические основы молекул ДНК и нуклеиновых кислот для создания на их основе четко заданных структур. Промышленный синтез молекул лекарств и фармакологических препаратов четко определенной формы (бис пептиды).

Благодаря быстрому прогрессу в технологии изготовления частиц наноразмеров, был дан толчок к развитию новой области нанотехнологии – наноплазмонике. Оказалось возможным передавать электромагнитное излучение вдоль цепочки металлических наночастиц с помощью возбуждения плазмонных колебаний.

Нанодатчики строительных конструкций будут следить за их прочностью, обнаруживать любые угрозы целостности. Объекты, построенные с использованием нанотехнологий, смогут прослужить в пять раз дольше, чем современные сооружения. Дома будут подстраиваться под потребности жильцов, обеспечивая им прохладу летом и сохраняя тепло зимой.

Мы меньше будем зависеть от нефти и газа. У современных солнечных батарей КПД около 20%. С применением нанотехнологий он может вырасти в 2-3 раза. Тонкие нанопленки на крыше и стенах смогут обеспечить энергией весь дом (если, конечно, солнца будет достаточно).

Всю громоздкую технику заменят роботы – легко управляемые устройства. Они смогут создавать любые механизмы на уровне атомов и молекул. Для производства машин будут использоваться новые наноматериалы, которые способны снижать трение, защищать детали от повреждений, экономить энергию. Это далеко не все сферы, в которых могут (и будут!) применяться нанотехнологии. Ученые считают, что появление нанотехнологий – начало новой Научно-технической революции, которая сильно изменит мир уже в ХХI веке. Стоит, правда, заметить, что в реальную практику нанотехнологии входят не очень быстро. Не так много устройств (в основном электроника) работает «с нано». Отчасти это объясняется высокой ценой нанотехнологий и не слишком высокой отдачей от нанотехнологической продукции.

Вероятно, уже в недалёком будущем с помощью нанотехнологий будут созданы высокотехнологичные, мобильные, легко управляемые устройства, которые успешно заменят пусть и автоматизированную, но сложную в управлении и громоздкую технику сегодняшнего дня.

Так, например, со временем биороботы, управляемые посредством компьютера, смогут выполнять функции нынешних громоздких насосных станций:

• ДНК компьютер – вычислительная система, использующая вычислительные возможности молекул ДНК. Биомолекулярные вычисления – это собирательное название для различных техник, так или иначе связанных с ДНК или РНК. При ДНК вычислениях данные представляются не в форме нулей и единиц, а в виде молекулярной структуры, построенной на основе спирали ДНК. Роль программного обеспечения для чтения, копирования и управления данными выполняют особые ферменты.
• Атомно силовой микроскоп – сканирующий зондовый микроскоп высокого разрешения, основанный на взаимодействии иглы кантилевера (зонда) с поверхностью исследуемого образца. В отличие от сканирующего туннельного микроскопа (СТМ), может исследовать как проводящие, так и непроводящие поверхности даже через слой жидкости, что позволяет работать с органическими молекулами (ДНК). Пространственное разрешение атомно силового микроскопа зависит от размера кантилевера и кривизны его острия. Разрешение достигает атомарного по горизонтали и существенно превышает его по вертикали.
• Антенна осциллятор– в лаборатории Бостонского университета была получена антенна осциллятор размерами порядка 1 мкм. Это устройство насчитывает 5000 миллионов атомов и способно осциллировать с частотой 1,49 гигагерц, что позволяет передавать с ее помощью огромные объемы информации.

тема

документ Инновационные технологии
документ Информационные технологии
документ Государственные закупки
документ Муниципальные закупки
документ Мотивация персонала

Получите консультацию: 8 (800) 600-76-83
Звонок по России бесплатный!

Не забываем поделиться:


Загадки

В небе одна, в земле вообще нету, а у бабы аж целых две...

посмотреть ответ


назад Назад | форум | вверх Вверх

Загадки

Есть пять человек разных национальностей, которые проживают в 5 домах. Каждый дом имеет свой цвет, отличный от цвета других домов. Каждый из этих людей курит и предпочитает определенный сорт сигарет. У каждого из этих людей есть по одному домашнему животному. Каждый из этих людей пьет свой любимый вид напитка.

посмотреть ответ
важное

Новая помощь малому бизнесу
Изменения по вопросам ИП

Новое в расчетах с персоналом в 2023 г.
Отчет по сотрудникам в 2023 г.
НДФЛ в 2023 г
Увеличение вычетов по НДФЛ
Что нового в патентной системе налогообложения в 2023
Что важно учесть предпринимателям при проведении сделок в иностранной валюте в 2023 году
Особенности работы бухгалтера на маркетплейсах в 2023 году
Риски бизнеса при работе с самозанятыми в 2023 году
Что ждет бухгалтера в работе в будущем 2024 году
Как компаниям МСП работать с китайскими контрагентами в 2023 г
Как выгодно продавать бухгалтерские услуги в 2023 году
Индексация заработной платы работодателями в РФ в 2024 г.
Правила работы компаний с сотрудниками с инвалидностью в 2024 году
Оплата и стимулирование труда директора в компаниях малого и среднего бизнеса в 2024 году
Правила увольнения сотрудников коммерческих компаний в 2024 г
Планирование отпусков сотрудников в небольших компаниях в 2024 году
Как уменьшить налоги при работе с маркетплейсами
Как защитить свой товар от потерь на маркетплейсах
Аудит отчетности за 2023 год
За что и как можно лишить работника премии
Как правильно переводить и перемещать работников компании в 2024 году
Размещение рекламы в интернете в 2024 году
Компенсации удаленным сотрудникам и налоги с их доходов в 2024 году
Переход бизнеса из онлайн в офлайн в 2024 г
Что должен знать бухгалтер о сдельной заработной плате в 2024 году
Как рассчитать и выплатить аванс в 2024 г
Как правильно использовать наличные в бизнесе в 2024 г.
Сложные вопросы работы с удаленными сотрудниками
Анализ денежных потоков в бизнесе в 2024 г
Что будет с налогом на прибыль в 2025 году
Как бизнесу правильно нанимать иностранцев в 2024 г
Можно ли устанавливать разную заработную плату сотрудникам на одной должности
Как укрепить трудовую дисциплину в компании в 2024 г
Как выбрать подрядчика по рекламе
Как небольшому бизнесу решить проблему дефицита кадров в 2024 году
Профайлинг – полезен ли он для небольшой компании?
Пени по налогам бизнеса в 2024 и 2025 годах



©2009-2023 Центр управления финансами.