Управление финансами

документы

1. Компенсации приобретателям жилья 2020 г.
2. Выплаты на детей до 3 лет с 2020 года
3. Льготы на имущество для многодетных семей в 2020 г.
4. Повышение пенсий сверх прожиточного минимума с 2020 года
5. Защита социальных выплат от взысканий в 2020 году
6. Увеличение социальной поддержки семей с 2020 года
7. Компенсация ипотеки многодетным семьям в 2020 г.
8. Ипотечные каникулы с 2020 года
9. Новое в пенсионном законодательстве в 2020 году


Управление финансами
Психологические тесты Интересные тесты   Недвижимость Недвижимость
папка Главная » Полезные статьи » Методы экологического мониторинга

Методы экологического мониторинга

Экологический мониторинг

Вернуться назад на Экологический мониторинг



Охрана окружающей среды и рациональное использование ее ресурсов в условиях бурного роста промышленного производства стала одной из актуальнейших проблем современности. Результаты воздействия человека на природу необходимо рассматривать не только в свете развития технического прогресса и роста населения, но и в зависимости от социальных условий, в которых они проявляются. Отношение к природной среде является мерой социальных и технических достижений человеческого общества, характеристикой уровня цивилизации. Сотрудничество между странами в области охраны природы осуществляется через такие организации как Европейский экономический союз (ЕЭС), Организация объединенных наций (ООН) в рамках "Программы ООН по окружающей среде" (ЮНЕП). К главным направлениям деятельности ЮНЕП относятся экологические проблемы населенных пунктов, а также проблемы здоровья и благосостояния человека, охрана наземных экосистем и борьба с распространением пустынь, деятельность, связанная с экологическим образованием и информацией, торговые, экономические и технологические аспекты по защите природы, защита Мирового океана от загрязнения, охрана растительности и диких животных, экологические вопросы энергетики. Экономическая проблема охраны окружающей среды заключается в оценке ущерба, нанесенного загрязнением атмосферы, водных ресурсов, разработкой и использованием недр. Экономический ущерб представляет собой затраты, возникающие вследствие повышенного (сверх того уровня, при котором не возникает негативных последствий) загрязнения воздушной среды, водных ресурсов, земной поверхности. Загрязненная природная среда может отрицательно воздействовать на "реципиентов" (людей, промышленные, транспортные и жилищно-коммунальные объекты, сельскохозяйственные угодья, леса, водоемы и т. п.). Эти отрицательные воздействия проявляются в основном в повышении заболеваемости людей и ухудшения их жизненных условий, в снижении продуктивности биологических природных ресурсов, ускорения износа зданий, сооружений и оборудования.

В связи с вышеизложенным можно выделить следующие группы затрат:

• затраты, направленные на предотвращение вредного воздействия загрязненной окружающей среды на реципиентов,
• затраты, вызываемые этим воздействием.

К первой группе относятся затраты на перемещение реципиентов за пределы зон локальных загрязнений окружающей среды, на озеленение санитарно-защитных зон, на сооружение и эксплуатацию систем очистки воздуха, поступающего в жилые помещения. Затраты, отнесенные ко второй группе, включают расходы на медицинское обслуживание заболевших от загрязненного воздуха, оплату бюллетеней, компенсацию потерь продукции из-за повышения заболеваемости, на компенсацию снижения продуктивности биологических земельных и водных ресурсов. Мониторингом окружающей среды называется регулярные, выполняемые по заданной программе наблюдения природных сред, природных ресурсов, растительного и животного мира, позволяющие выделить их состояния и происходящие в них процессы под влиянием антропогенной деятельности. Под экологическим мониторингом следует понимать организованный мониторинг окружающей среды, при котором, во-первых, обеспечивается постоянная оценка экологических условий среды обитания человека и биологических объектов (растений, животных, микроорганизмов и т. д.), а также оценка состояния и функциональной ценности экосистемы, во-вторых, создаются условия для определения корректирующих действий в тех случаях, когда целевые показатели экологических условий не достигаются.

В систему мониторинга должны входить следующие основные процедуры:

• выделение (определение) объекта наблюдения;
• обследование выделенного объекта наблюдения;
• составление информационной модели для объекта наблюдения;
• планирование наблюдений;
• оценка состояния объекта наблюдения и идентификация его информационной модели;
• прогнозирование изменения состояния объекта наблюдения;
• представление информации в удобной для использования форме и доведения ее до потребителя.

Физико-химические методы

Современные методы контроля химических веществ, загрязняющих окружающую среду, - это, по сути, физико-химические методы. Иногда их объединяют термином "инструментальные методы анализа". Исключительно мощное средство контроля загрязнения различных объектов окружающей среды - хроматографические методы, позволяющие анализировать сложные смеси компонентов. Наибольшее значение приобрели тонкослойная, газожидкостная и высокоэффективная жидкостная и ионная хроматография. Будучи несложной по технике выполнения, тонкослойная хроматография хороша при определении пестицидов и других органических соединений-загрязнителей. Газожидкостная хроматография эффективна при анализе многокомпонентных смесей летучих органических веществ. Применение различных детекторов, например малоизбирательного детектора по теплопроводности - катарометра и избирательных - пламенно-ионизационного, электронного захвата, атомно-эмиссионного, позволяет достигать высокой чувствительности при определении высокотоксичных соединений. Высокоэффективную жидкостную хроматографию применяют при анализе смесей многих загрязняющих веществ, прежде всего нелетучих. Используя высокочувствительные детекторы: спектрофотометрические, флуориметрические, электрохимические, можно определять очень малые количества веществ. При анализе смесей сложного состава особенно эффективно сочетание хроматографии с инфракрасной спектрометрией и особенно с масс-спектрометрией. В последнем случае роль детектора играет подключенный к хроматографу масс-спектрометр. Обычно приборы такого типа оснащены мощным компьютером. Так определяют пестициды, полихлорированные бифенилы, диоксины, нитрозоамины и другие токсичные вещества. Ионная хроматография удобна при анализе катионного и анионного составов вод. Один из физико-химических методов мониторинга - ИК-спектрофотометрия. Инфракрасные спектры поглощения, отражения или рассеяния несут чрезвычайно богатую информацию о составе и свойствах пробы. Сопоставляя ИК спектр образца со спектрами известных веществ, можно идентифицировать неизвестное вещество, определить основной состав пищевых продуктов, полимеров, обнаружить примеси в атмосферном воздухе и газах, провести фракционный или структурно-групповой анализ. Методом корреляционного анализа по ИК спектру пробы также можно определить его физико-химические или биологические характеристики, например всхожесть семян, калорийность пищевых продуктов, размер гранул, плотность и т. д. Люминесцентный методы характеризуются высокой экспрессностью и чувствительностью, что позволяет их использовать для систематического контроля за состоянием биосферы и гидросферы и для определения микроэлементов, а также суммарного содержания загрязняющих органических веществ и индивидуальных органических соединений.

Люминесцентный метод относят к числу наиболее чувствительных эмиссионных методов определения следовых количеств органических и неорганических примесей в воздухе. Люминесцентный анализ применяют при определении в воздухе полиароматических углеводородов и их производных. Если определяемое соединение не обнаруживается люминесцентным методом анализа, возможен перевод его в производное, обладающее эмиссией флуоресценции. Для количественного анализа используют также явление тушения люминесценции.

Полярография - одно из электрохимических методов анализа. Полярограмма - зависимость силы тока от величины приложенного напряжения на электроды. При этом методе не происходит физического разделения смеси на отдельные компоненты. В качестве катода чаще всего применяют ртутный капающий электрод (РКЭ), поверхность которого непрерывно обновляется, что позволяет получать полярограммы и проводить анализ с высокой воспроизводимостью результатов. Прямое определение возможно лишь при наличии веществ, способных восстанавливаться на РКЭ: ионы металлов, органические соединения, содержащие галоид-, нитро, нитрозогруппы, карбонильные соединения, пероксиды, эпоксиды и др. это несколько ограничивает возможности метода. Однако при определении полягрофических активных соединений позволяет достичь высокой селективности определения без предварительного разделения сложных смесей на отдельные компоненты. Одним из важнейших этапов реализации экологического мониторинга является дистанционный мониторинг. Как способ получения информации дистанционный мониторинг условно может быть разделен на космический, авиационный, наземный, подземный и подводный. Дистанционный мониторинг, в частности аэрокосмический, применяется для контроля состояния природно-техногенных объектов нефтегазовой отрасли. Основными задачами дистанционного мониторинга являются: техническое состояние магистральных нефте и газопроводов: определение нефтяных загрязнений окружающей среды в местах добычи, переработки и транспортировки углеводородов; оценка масштабов загрязнений при аварийных ситуациях; определение нефтяных загрязнений водной поверхности; контроль ландшафтных изменений в районе расположения техногенных объектов; обнаружение мест и объемов утечек нефтяных углеводородов из наземных и подземных магистральных трубопроводов. Аэрокосмический мониторинг особенно важен для труднодоступных объектов, где проведение непосредственных измерений затруднено или невозможно.

Для решения задач промышленно-экологического мониторинга (ПЭМ) наибольшее распространение получили следующие методы:

- методы мониторинга средствами активного зондирования, к которым относятся лидары, работающие по методу комбинационного рассеяния, на резонансных эффектах и по принципу дифференциального поглощения. Наиболее пригодными для дистанционного контроля нефтяных загрязнений являются системы активного ИК- и УФ-зондирования, а также флуоресцентный лазер, позволяющий определять наличие нефти на поверхности: воды, почвы, снега, льда. Примером типичного лазерного флуориметра может служить лидар MK-III КЦДЗ (канадского центра дистанционного зондирования). Лидар предназначен для обнаружения, идентификации, картирования, слежения за перемещением нефтяных пленок на поверхности воды. Основные параметры лидара излучатель - N-лазер, длина волны - 0,37 мкм, диапазон спектрометра - 0,386-0,690 мкм. Следует отметить, что с помощью лидаров, в принципе, возможно, определять концентрации загрязняющих веществ. Так, например, перестраиваемый лидар в ИК-диапазоне (от 2,7 до 3,7 мкм), используемый на вертолете МИ-8Т в составе комплекса «Эфир-АК», позволяет измерять концентрации углеводородных газов (метан, этан), а также сероводород и другие газы с пределом обнаружения до 2 ppm;
- методы мониторинга средствами пассивного зондирования, к которым относятся тепловизионные системы, много-спектральные сканеры, средства телевизионной и аэрофотосъемки, трассовые радиометры, видеоспектрометры. Многоспектральные сканеры являются наиболее универсальными системами пассивного дистанционного зондирования, так как они могут объединять функции телевизионных, тепловизионных и спектрометрических систем. В НИИ комплексных испытаний оптико-электронных приборов ВНЦ “ГОИ им С. И. Вавилова” разработан многоспектральный сканер «Везувий ЭК», предназначенный для получения изображения в видимом, инфракрасном и тепловом диапазонах. Методы теплового контроля являются косвенными и основаны на регистрации теплофизических свойств загрязненной поверхности. Таким образом, тепловизоры, ИК-сканеры могут зафиксировать, как правило, факт наличия загрязнения, а не определять концентрацию;
- радиотехнические методы мониторинга-радиотепловые измерения в СВЧ-диапазоне и активное радиолокационное зондирование. Особенно эффективно применение СВЧ-радиометрии (миллиметровый диапазон) для обнаружения и контроля нефтяных загрязнений водной поверхности, а также измерения толщины пленки. Например, двухканальный СВЧ-радиометр, работающий в диапазоне 10,7 - 3,5 ГГц, способен измерять толщину пленки в пределах от 0,1 до 7,0 мм при полосе захвата 1600 м с высоты 800 м и скорости полета 200 км/ч.

Биологические методы мониторинга

Состояние биологической системы (организм, популяция, биоценоз) в той или иной степени характеризует воздействие на нее природных или антропогенных факторов и условий среды и может применяться для их оценки. Биоиндикаторы (от био и лат. indico - указываю, определяю) - организмы, присутствие, количество или особенности развития которых служат показателями естественных процессов, условий или антропогенных изменений среды обитания. Их индикаторная значимость определяется экологической толерантностью биологической системы. В пределах зоны толерантности организм способен поддерживать свой гомеостаз. Любой фактор, если он выхолит за пределы «зоны комфорта» для данного организма, является стрессовым. В этом случае организм реагирует ответной реакцией различной интенсивности и длительности, проявление которой зависит от вида и является показателем его индикаторной ценности. Именно ответную реакцию определяют методы биоиндикации. Биологическая система реагирует на воздействие среды в целом, а не только на отдельные факторы, причем амплитуда колебаний физиологической толерантности модифицируется внутренним состоянием системы - условиями питания, возрастом, генетически контролируемой устойчивостью. В качестве объектов для биоиндикации применяются разнообразные организмы - бактерии, водоросли, высшие растения, беспозвоночные животные, млекопитающие. Для гарантированного выявления присутствия в природных средах токсического агента неизвестного химического состава, как правило, используется набор объектов, представляющих различные группы сообщества. С введением каждого дополнительного объекта эффективность схемы испытаний повышается, однако нет смысла бесконечно расширять ассортимент обязательных объектов для использования в такой оценке.

Для биоиндикации необходимо выбирать наиболее чувствительные сообщества, характеризующиеся максимальными скоростью отклика и выраженностью параметров. Например, в водных экосистемах наиболее чувствительными являются планктонные сообщества, которые быстро реагируют на изменение среды благодаря короткому жизненному циклу и высокой скорости воспроизводства. Бентосные сообщества, где организмы имеют достаточно длинный жизненный цикл, более консервативны: перестройки происходят в них при длительном хроническом загрязнении, приводящем к необратимости процессов.

К методам биоиндикации, которые можно применять при исследовании экосистемы, относится выявление в изучаемой зоне редких и исчезающих видов. Список таких организмов, по сути, является набором индикаторных видов, наиболее чувствительных к антропогенному воздействию.

Предлагаемая система биомониторинга представляет собой комплекс различных подходов для оценки состояния разных организмов, находящихся под воздействием комплекса как естественных, так и антропогенных факторов. Фундаментальным показателем их состояния является эффективность физиологических процессов, обеспечивающих нормальное развитие организма. В оптимальных условиях организм реагирует на воздействие среды посредством сложной физиологической системы буферных гомеостатических механизмов. Эти механизмы поддерживают оптимальное протекание процессов развития. Под воздействием неблагоприятных условий механизмы поддержания гомеостаза могут быть нарушены, что приводит к состоянию стресса. Такие нарушения могут происходить до появления изменений обычно используемых параметров жизнеспособности. Таким образом, методология биотестирования, основанная на исследовании эффективности гомеостатических механизмов, позволяет уловить присутствие стрессирующего воздействия раньше, чем многие обычно используемые методы.

Методы статистической и математической обработки данных

Для обработки экомониторинговых данных используются методы вычислительной и математической биологии (в том числе и математическое моделирование), а также широкий спектр информационных технологий.

Географические информационные системы

ГИС является отражением общей тенденции привязки экологических данных к пространственным объектам. Как считают некоторые специалисты, дальнейшая интеграция ГИС и экологического мониторинга приведёт к созданию мощных ЭИС (экологических информационных систем) с плотной пространственной привязкой.

тема

документ Экологическая экспертиза
документ Экологический кризис
документ Экологические проблемы
документ Экологическая экспертиза товаров
документ Экологическая ответственность
документ Экологическое и аграрное право
документ Экологическое право



назад Назад | форум | вверх Вверх

Управление финансами
важное

Рекордное повышение налогов на бизнес с 2020 года
Закон о плохих родителях в 2020 г.
Налог на скважину с 2020 года
Мусорная реформа в 2020 году
Изменения в трудовом законодательстве в 2020 году
Запрет коллекторам взыскивать долги по ЖКХ с 2020 года
Изменения в законодательстве в 2020 году
Индивидуальный инвестиционный счет в 2020 году
Продление дачной амнистии в 2020 г.
Запрет залога жилья под микрозаймы в 2020 году
Запрет хостелов в жилых домах с 2020 года
Право на ипотечные каникулы в 2020
Электронные трудовые книжки с 2020 года
Новые налоги с 2020 года
Обязательная маркировка лекарств с 2020 года
Изменения в продажах через интернет с 2020 года
Изменения в 2020 году


©2009-2019 Центр управления финансами. Все материалы представленные на сайте размещены исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Контакты Контакты